Skip to main content
Log in

An h-adaptive RKDG method with troubled-cell indicator for two-dimensional hyperbolic conservation laws

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In Zhu and Qiu (J Comput Phys 228:6957–6976, 2009), we systematically investigated adaptive Runge-Kutta discontinuous Galerkin (RKDG) methods for hyperbolic conservation laws with different indicators, with an objective of obtaining efficient and reliable indicators to obtain better performance for adaptive computation to save computational cost. In this follow-up paper, we extend the method to solve two-dimensional problems. Although the main idea of the method for two-dimensional case is similar to that for one-dimensional case, the extension of the implementation of the method to two-dimensional case is nontrivial because of the complexity of the adaptive mesh with hanging nodes. We lay our emphasis on the implementation details including adaptive procedure, solution projection, solution reconstruction and troubled-cell indicator. Extensive numerical experiments are presented to show the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Biswas, R., Devine, K., Flaherty, J.: Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math. 14, 255–283 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brio, M., Zakharian, A., Webb, G.: Two dimensional Riemann solver for Euler equations of gas dynamics. J. Comput. Phys. 167, 177–195 (2001)

    Article  MATH  Google Scholar 

  3. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection P 1-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. (M 2 AN) 25, 337–361 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dedner, A., Makridakis, C., Ohlberger, M.: Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws. SIAM J. Numer. Anal. 45, 514–538 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Devine, K., Flaherty, J.: Parallel adaptive hp-refinement techniques for conservation laws. Appl. Numer. Math. 20, 367–386 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flaherty, J., Loy, R., Shephard, M., Szymanski, B., Teresco, J., Ziantz, L.: Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. J. Parallel Distrib. Comput. 47, 139–152 (1997)

    Article  Google Scholar 

  12. Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput. 24, 979–1004 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lax, P., Liu, X.: Solution of two dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319–340 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin mehtods using weighted essentially nonosillatory limiters. SIAM J. Sci. Comput. 27, 995–1013 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Qiu, J., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Remacle, J.-F., Flaherty, J., Shephard, M.: An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems. SIAM Rev. 45, 53–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shu, C.-W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121 (1987)

    Article  MATH  Google Scholar 

  19. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu, H., Qiu, J.: Adaptive Runge-Kutta discontinuous Galerkin methods using different indicators: one-dimensional case. J. Comput. Phys. 228, 6957–6976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxian Qiu.

Additional information

Communicated by: Ben Yu Guo.

The research was partially supported by NSFC grant 10931004, 11126287, 11201242, NJUPT grant NY211029 and ISTCP of China grant No. 2010DFR00700.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Qiu, J. An h-adaptive RKDG method with troubled-cell indicator for two-dimensional hyperbolic conservation laws. Adv Comput Math 39, 445–463 (2013). https://doi.org/10.1007/s10444-012-9287-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-012-9287-7

Keywords

Mathematics Subject Classifications (2010)

Navigation