Skip to main content
Log in

Nested splitting CG-like iterative method for solving the continuous Sylvester equation and preconditioning

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We present a nested splitting conjugate gradient iteration method for solving large sparse continuous Sylvester equation, in which both coefficient matrices are (non-Hermitian) positive semi-definite, and at least one of them is positive definite. This method is actually inner/outer iterations, which employs the Sylvester conjugate gradient method as inner iteration to approximate each outer iterate, while each outer iteration is induced by a convergent and Hermitian positive definite splitting of the coefficient matrices. Convergence conditions of this method are studied and numerical experiments show the efficiency of this method. In addition, we show that the quasi-Hermitian splitting can induce accurate, robust and effective preconditioned Krylov subspace methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axelsson, O., Bai, Z.-Z., Qiu, S.-X.: A class of nested iterative schemes for linear systems with a coefficient matrix with a dominant positive definite symmetric part. Numer. Algoritm. 35, 351–372 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bai, Z.-Z.: Splitting iteration methods for non-Hermitian positive definite systems of linear equations. Hokkaido Math. J. 36, 801–814 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bai, Z.-Z.: On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations. J. Comput. Math. 29(2), 185–198 (2011)

    MATH  MathSciNet  Google Scholar 

  4. Bai, Z.-Z., Zhang, S.-L.: A regularized conjugate gradient method for symmetric positive definite system of linear equations. J. Comput. Math. 20, 437–448 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bai, Z.-Z., Golub, G.H., Ng, M.K.: On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. Linear Algebra Appl. 428, 413–440 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bai, Z.-Z., Yin, J.-F., Su, Y.-F.: A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math. 24, 539–552 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Bartels, R.H., Stewart, G.W.: Algorithm 432: solution of the matrix equation A X + X B = C. Circ. Syst. Signal Proc. 13, 820–826 (1994)

    Google Scholar 

  9. Benner, P., Li, R.-C., Truhar, N.: On the ADI method for Sylvester equations. J. Comput. Appl. Math. 233, 1035–1045 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bouhamidi, A., Jbilou, K.: Sylvester Tikhonov-regularization methods in image restoration. J. Comput. Appl. Math. 206, 86–98 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Calvetti, D., Reichel, L.: Application of ADI iterative methods to the restoration of noisy images. SIAM J. Matrix Anal. Appl. 17, 165–186 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Datta, B.: Numerical Methods for Linear Control Systems. Elsevier Academic Press, New York (2004)

  13. Duff, I.S., Grimes, R.G., Lewis, J.G.: User’s Guide for the Harwell-Boeing Sparse Matrix Collection, Technical Report RAL-92-086. Rutherford Applton Laboratory, Chilton (1992)

  14. El Guennouni, A., Jbilou, K., Riquet, J.: Block Krylov subspace methods for solving large Sylvester equation. Numer. Algoritm. 29, 75–96 (2002)

    Article  MATH  Google Scholar 

  15. El Guennouni, A., Jbilou, K., Sadok, H.: A block version of BiCGSTAB for linear systems with multiple right-hand sides. Electron. Trans. Numer. Anal. 16, 243–256 (2004)

    Google Scholar 

  16. Evans, D.J., Wan, C.R.: A preconditioned conjugate gradient method for A X + X B = C. Int. J. Comput. Math. 49, 207–219 (1993)

    Article  MATH  Google Scholar 

  17. Golub, G.H., Nash, S., Van Loan, C.: A Hessenberg-Schur method for the problem A X + X B = C. IEEE Trans. Control AC-24, 909–913 (1979)

    Article  Google Scholar 

  18. Golub, G.H., Overton, M.L.: The convergence of inexact Chebyshev and Richardson iterative methods for solving linear systems. Numer. Math. 53, 571–593 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

  20. Hu, D.Y., Reichel, L.: Krylov-subspace methods for the Sylvester equation. Linear Algebra Appl. 172, 283–313 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for matrix equations. Appl. Numer. Math. 31, 97–109 (1999)

    Article  MathSciNet  Google Scholar 

  22. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations, no. 16. Frontiers in Applied Mathematics, SIAM, Philadelphia (1995)

  23. Khorsand Zak, M., Toutounian, F.: Nested splitting conjugate gradient method for matrix equation A X B = C and preconditioning. Comput. Math. Appl. 66, 269–278 (2013)

    Article  MathSciNet  Google Scholar 

  24. Krukier, L.A., Martynova, T.S., Bai, Z.-Z.: Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems. J. Comput. Appl. Math. 232, 3–16 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lütkepohl, H.: Handbook of Matrices. Wiley. England (1996)

  26. Salkuyeh, D.K., Toutounian, F.: New approaches for solving large Sylvester equations. Appl. Math. Comput. 173, 9–18 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang, C.-L., Bai, Z.-Z.: Sufficient conditions for the convergent splittings of non-Hermitian positive definite matrices. Linear Algebra Appl. 330, 215–218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, L., Bai, Z.-Z.: Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts. BIT Numer. Math. 44, 363–386 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, L., Bai, Z.-Z.: Convergence conditions for splitting iteration methods for non-Hermitian linear systems. Linear Algebra Appl. 428, 453–468 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Khorsand Zak.

Additional information

Communicated by: J. M. Pen͂a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khorsand Zak, M., Toutounian, F. Nested splitting CG-like iterative method for solving the continuous Sylvester equation and preconditioning. Adv Comput Math 40, 865–880 (2014). https://doi.org/10.1007/s10444-013-9330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-013-9330-3

Keywords

Mathematics Subject Classifications (2010)

Navigation