Skip to main content
Log in

Energy-conserving methods for Hamiltonian boundary value problems and applications in astrodynamics

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We introduce new methods for the numerical solution of general Hamiltonian boundary value problems. The main feature of the new formulae is to produce numerical solutions along which the energy is precisely conserved, as is the case with the analytical solution. We apply the methods to locate periodic orbits in the circular restricted three body problem by using their energy value rather than their period as input data. We also use the methods for solving optimal transfer problems in astrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, D.S., Iavernaro, F., Rosa, A.: Early days in complex dynamics. A history of complex dynamics in one variable during 1906–1942. History of Mathematics, Vol. 38. American Mathematical Society, Providence (2012)

  2. Amodio, P., Cash, J.R., Fairweather, G., Gladwell, I., Kraut, G.L., Roussos, G., Paprzycki, M., Wright, R.W.: Almost block diagonal linear systems: sequential and parallel solution techniques, and applications. Numer. Linear Algebra Appl. 7, 275–317 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amodio, P., Romanazzi, G.: Algorithm 859: BABDCR–a Fortran 90 package for the solution of Bordered ABD linear systems. ACM Trans. Math. Softw. 32, 597–608 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. Encyclopaedia Math. Sci., 3rd edn., Vol. 3. Springer-Verlag, Berlin (2006)

  5. Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical solution of boundary value problems for ordinary differential equations. Classics in Applied Mathematics, vol. 13. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1995)

    Book  Google Scholar 

  6. Battin, R.H.: An introduction to the mathematics and methods of astrodynamics. Revised edition. American Institute of Aeronautics and Astronautics (AIAA), Reston (1999)

    Book  MATH  Google Scholar 

  7. Brugnano, L., Iavernaro, F., Trigiante, D.: Isospectral Property of Hamiltonian Boundary Value Methods (HBVMs) and their blended implementation. arXiv:1002.1387 [math.NA] (2010)

  8. Brugnano, L., Iavernaro, F., Trigiante, D.: A note on the efficient implementation of Hamiltonian BVMs. J. Comput. Appl. Math. 236, 375–383 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian Boundary Value Methods (energy preserving discrete line methods). J. Numer. Anal. Ind. Appl. Math. 5(1–2), 17–37 (2010)

    MathSciNet  Google Scholar 

  10. Brugnano, L., Iavernaro, F., Trigiante, D.: The lack of continuity and the role of infinite and infinitesimal in numerical methods for ODEs: the case of symplecticity. Appl. Math. Comput. 218(16), 8053–8063 (2012)

    Article  MathSciNet  Google Scholar 

  11. Brugnano, L., Iavernaro, F., Trigiante, D.: A simple framework for the derivation and analysis of effective one-step methods for ODEs. Appl. Math. Comput. 218(17), 8475–8485 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Deuflhard, P.: Computation of periodic solutions of nonlinear ODE’s. BIT 24, 456–466 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Deuflhard, P.: Newton methods for nonlinear problems. Affine invariance and adaptive algorithms. Springer Series in Computational Mathematics, vol. 35. Springer, Heidelberg (2011)

    Google Scholar 

  14. Farquhar, R. W.: Halo-orbit and lunar-swingby missions of the 1990s. Acta Astronautica 24, 227–234 (1991)

    Article  Google Scholar 

  15. Fiedler, B.: Global bifurcation of periodic solutions with symmetry. Lecture Notes in Mathematics. Springer Verlag, Berlin (1988)

    Google Scholar 

  16. Guibout, V.M., Scheeres, D.J.: Solving two-point boundary value problems using the Hamilton-Jacobi theory. Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy (2006)

  17. Gustafson, E.D., Scheeres, D.J.: Dynamically Relevant Local Coordinates for Halo Orbits. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu (2008)

    Book  Google Scholar 

  18. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, 2nd edn. Springer, Berlin (2006)

  19. Howell, K.C.: Three-dimensional, periodic, “halo” orbits. Celestial Mech. 32(1), 53–71 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Iavernaro, F., Trigiante, D.: High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. J. Numer. Anal. Ind. Appl. Math. 4(1-2), 87–101 (2009)

    MATH  MathSciNet  Google Scholar 

  21. Jorba, A., Masdemont, J.: Dynamics in the center manifold of the collinear points of the restricted three body problem. Phys. D 132, 189–213 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Keller, H.B.: Numerical methods for two-point boundary value problems. Ginn-Blaisdell, Waltham (1968)

    MATH  Google Scholar 

  23. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical systems, the three-body problem and space mission design. Marsden Books. Available at URL: http://www.shaneross.com/books/space (2011)

  24. Lakshmikantham, V., Trigiante, D.: Theory of difference equations: numerical methods and applications. Monographs and Textbooks in Pure and Applied Mathematics, vol. 251, 2nd edn. Marcel Dekker, Inc., New York (2002)

    Book  Google Scholar 

  25. Leimkuhler, B., Reich, S.: Simulating Hamiltonian dynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  26. Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian dynamical systems and the N-body problem. Applied Mathematical Sciences, vol. 90, 2nd edn. Springer, New York (2009)

    Google Scholar 

  27. Muñoz-Almaraz, F.J., Freire, E., Galán, J., Doedel, E., Vanderbauwhede, A.: Continuation of periodic orbits in conservative and Hamiltonian systems. Phys. D 181(1-2), 1–38 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nayfeh, A.H., Balachandran, B.: Applied nonlinear dynamics; Analytical, computational and experimental methods. Wiley-International, Chichester (1995)

    Book  MATH  Google Scholar 

  29. Peng, H.J., Gao, Q., Wu, Z.G., Zhong, W.X.: Symplectic adaptive algorithm for solving nonlinear two-point boundary value problems in Astrodynamics. Celestial Mech. Dynam. Astronom. 110, 319–342 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Richardson, D.L.: Analytical construction of periodic orbits about the collinear points. Celestial Mech. 22, 241–253 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian problems, AMMC 7. Chapman & Hall (1994)

  32. Sepulchre, J.-A., Mac Kay, R.S.: Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators. Nonlinearity 10(3), 679–713 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Serban, R., Koon, W., Wang, S., Lo, M.W., Marsden, J.E., Petzold, L.R., Ross, S.D., Wilson, R.S.: Halo orbit mission correction maneuvers using optimal control. Automatica J. IFAC 38(4), 571–583 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wulff, C., Schebesch, A.: Numerical continuation of hamiltonian relative periodic orbits. J. Nonlinear Sci. 18, 343–390 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felice Iavernaro.

Additional information

Communicated by: M. Stynes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amodio, P., Brugnano, L. & Iavernaro, F. Energy-conserving methods for Hamiltonian boundary value problems and applications in astrodynamics. Adv Comput Math 41, 881–905 (2015). https://doi.org/10.1007/s10444-014-9390-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9390-z

Keywords

Mathematics Subject Classification (2010)

Navigation