Skip to main content
Log in

A mixed formulation for the direct approximation of L 2-weighted controls for the linear heat equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the numerical computation of null controls for the linear heat equation. The goal is to compute approximations of controls that drive the solution from a prescribed initial state to zero at a given positive time. In [Fernandez-Cara & Münch, Strong convergence approximations of null controls for the 1D heat equation, 2013], a so-called primal method is described leading to a strongly convergent approximation of distributed control: the controls minimize quadratic weighted functionals involving both the control and the state and are obtained by solving the corresponding optimality conditions. In this work, we adapt the method to approximate the control of minimal square integrable-weighted norm. The optimality conditions of the problem are reformulated as a mixed formulation involving both the state and its adjoint. We prove the well-posedeness of the mixed formulation (in particular the inf-sup condition) then discuss several numerical experiments. The approach covers both the boundary and the inner situation and is valid in any dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Belgacem, F., Kaber, S. M.: On the Dirichlet boundary controllability of the one-dimensional heat equation: semi-analytical calculations and ill-posedness degree. Inverse Problems 27(19), 055012 (2011)

    Article  MathSciNet  Google Scholar 

  2. Boyer, F.: On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems. In: CANUM, 2012, Super-Besse, ESAIM Proc., EDP Sci., Les Ulis (2013)

  3. Boyer, F., Hubert, F., Le Rousseau, J.: Uniform controllability properties for space/time-discretized parabolic equations. Numer Math. 118, 601–661 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods, vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991)

    Book  Google Scholar 

  5. Carthel, C., Glowinski, R., Lions, J.-L.: On exact and approximate boundary controllabilities for the heat equation: a numerical approach. J. Optim. Theory Appl. 82, 429–484 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castro, C., Cîndea, N., A. Münch: Controllability of the linear wave equation with moving inner actions. SIAM J. Control Optim. 52, 4027–4056 (2014)

    Article  MathSciNet  Google Scholar 

  7. Cazenave, T., Haraux, A.: An introduction to semilinear evolution equations, vol. 13 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press Oxford University Press, New York, 1998. In: Translated from the French original by Yvan Martel and revised by the authors (1990)

  8. Chapelle, D., Bathe, K.-J.: The inf-sup test. Comput. & Structures 47, 537–545 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P. G.: The finite element method for elliptic problems. In: Vol. 40 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. (2002)

  10. Cîndea, N., Fernández-Cara, E., Münch, A.: Numerical controllability of the wave equation through primal methods and carleman estimates, ESAIM Control Optim. Calc. Var. 19, 1076–1108 (2013)

    MATH  Google Scholar 

  11. Cîndea, N., Münch, A.: A mixed formulation for the direct approximation of the control of minimal L 2-norm for linear type wave equations. In: To appear in Calcolo (Springer), http://hal.archives-ouvertes.fr/hal-00853767. vol. 52, issue 2 (2015)

  12. Coron, J.-M.: Control and nonlinearity, vol. 136 of Mathematical Surveys and Monographs, American Mathematical Society. In: Providence RI (2007)

  13. Daniel, J. W.: The approximate minimization of functionals. Prentice-Hall Inc., Englewood Cliffs N.J. (1971)

    MATH  Google Scholar 

  14. Dunavant, D. A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle, Internat. J. Numer. Methods Engrg. 21, 1129–1148 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Engl, H. W., Hanke, M., Neubauer, A.: Regularization of inverse problems, vol. 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1996)

    Book  Google Scholar 

  16. Ervedoza, S., Valein, J.: On the observability of abstract time-discrete linear parabolic equations. Rev. Mat. Complut. 23, 163–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fernández-Cara, E., Münch, A.: Numerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methods. Math. Control Relat. Fields 2, 217–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fernández-Cara, E., Münch, A.: Strong convergent approximations of null controls for the 1D heat equation. SeMA J. 61, 49–78 (2013)

  19. Fernández-Cara, E., Münch, A.: Numerical exact controllability of the 1D heat equation: duality and Carleman weights. J. Optim. Theory Appl. 163, 253–285 (2014)

  20. Fortin, M., Glowinski, R.: Augmented Lagrangian methods, vol. 15 of Studies in Mathematics and its Applications, North-Holland Publishing Co. In: Amsterdam, Applications to the numerical solution of boundary value problems, Translated from the French by B. Hunt and D. C. Spicer (1983)

  21. Fursikov, A.V., Imanuvilov, O.Y.: Controllability of evolution equations, vol. 34 of Lecture Notes Series. In: Seoul National University Research Institute of Mathematics Global Analysis Research Center Seoul (1996)

  22. Glowinski, R.: Handbook of numerical analysis. Vol. IX. In: Handbook of Numerical Analysis, IX, North-Holland, Amsterdam, 2003. Numerical methods for fluids. Part 3. (2003)

  23. Glowinski, R., Lions, J.-L.: Exact and approximate controllability for distributed parameter systems, in Acta numerica, 1995, Acta Numer., Cambridge Univ. In: Press, Cambridge (1995)

  24. Glowinski, R., Lions, J.-L., He, J.: Exact and approximate controllability for distributed parameter systems, vol. 117 of Encyclopedia of Mathematics and its Applications, Cambridge University Press. In: Cambridge, A numerical approach (2008)

  25. Kindermann, S.: Convergence rates of the Hilbert uniqueness method via Tikhonov regularization. J. Optim. Theory Appl. 103, 657–673 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Labbé, S., Trélat, E.: Uniform controllability of semidiscrete approximations of parabolic control systems. Systems Control Lett. 55, 597–609 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lasiecka, I., Triggiani, R.: Control theory for partial differential equations: continuous and approximation theories. I, vol. 74 of Encyclopedia of Mathematics and its Applications, Cambridge University Press. In: Cambridge Abstract parabolic systems (2000)

  28. Lebeau, G., Robbiano, L.: Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations 20, 335–356 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lions, J.-L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, vol. 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, Paris. In: Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch (1988)

  30. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. III. In: Springer-Verlag, New York-Heidelberg, 1973. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 183. (1973)

  31. Micu, S., Zuazua, E.: On the regularity of null-controls of the linear 1-d heat equation. C. R. Math. Acad. Sci. Paris 349, 673–677 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Münch, A.: A least-squares formulation for the approximation of controls for the Stokes system. Math. Control Signals Systems 27, 1–27 (2015)

    Article  MathSciNet  Google Scholar 

  33. Münch, A., Pedregal, P.: Numerical null controllability of the heat equation through a least-squares and variational approach, European. J. Appl. Math. 25, 277–306 (2014)

    MATH  Google Scholar 

  34. Münch, A., Zuazua, E.: Numerical approximation of null controls for the heat equation: ill-posedness and remedies. Inverse Problems 26(39), 085018 (2010)

    Article  MathSciNet  Google Scholar 

  35. Russell, D. L.: Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20, 639–739 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zuazua, E.: Control and numerical approximation of the wave and heat equations, in International Congress of Mathematicians. Vol. III. Eur. Math. Soc., Zürich, 1389–1417 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Münch.

Additional information

Communicated by: Charlie Elliott

Partially supported by CAPES (Brazil) and grant MTM2010-15592 (DGI-MICINN, Spain)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Münch, A., Souza, D.A. A mixed formulation for the direct approximation of L 2-weighted controls for the linear heat equation. Adv Comput Math 42, 85–125 (2016). https://doi.org/10.1007/s10444-015-9412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9412-5

Keywords

Mathematics Subject Classifications (2010)

Navigation