Skip to main content
Log in

A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we are concerned with plane wave discretizations of nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. To this end, we design a plane wave method combined with local spectral elements for the discretization of such nonhomogeneous equations. This method contains two steps: we first solve a series of nonhomogeneous local problems on auxiliary smooth subdomains by the spectral element method, and then apply the plane wave method to the discretization of the resulting (locally homogeneous) residue problem on the global solution domain. We derive error estimates of the approximate solutions generated by this method. The numerical results show that the resulting approximate solutions possess high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amara, M., Djellouli, R., Farhat, C.: Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems. SIAM J. Numer. Anal. 47, 1038–1066 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C., Chen, C.: A new method of fundamental solutions applied to nonhomogeneous elliptic problems. Adv. Comput. Math. 23, 125–142 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves, C., Valtchev, S.: Numerical comparison of two meshfree methods for acoustic wave scattering. Eng. Anal. Bound. Elem. 29, 371–382 (2005)

    Article  MATH  Google Scholar 

  4. Brenner, S., Scott, L.: Mathematical Theory of Finite Element Methods, 3Rded., Texts Appl. Math. Springer, New York (2002)

    Book  Google Scholar 

  5. Buffa, A., Monk, P.: Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESAIM: M2AN Math. Model. Numer. Anal. 42, 925–940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cessenat, O.: Application d’une nouvelle formulation variationnelle aux équations d’ondes harmoniques, Problèmes de Helmholtz 2D et de Maxwell 3D, Ph.d. thesis, Université Paris IX Dauphine (1996)

  7. Cessenat, O., Despres, B.: Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35, 255–299 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cessenat, O., Despres, B.: Using plane waves as basis functions for solving time Harmonic equations with the ultra weak variational formulation. J. Comput. Acous. 11, 227–238 (2003)

    Article  MATH  Google Scholar 

  9. Deckers, E., Atak, O., Coox, L., DAmico, R., Devriendt, H., Jonckheere, S., Koo, K., Pluymers, B., Vandepitte, D., Desmet, W.: The wave based method: an overview of 15 years of research. Wave Motion 51, 550–565 (2014)

    Article  MathSciNet  Google Scholar 

  10. Desmet, W.: A wave based prediction technique for coupled vibro-acoustic analysis. KULeuven, Division PMA, Ph.D. Thesis 98D12 (1998)

  11. Du, Y., Wu, H.: Preasymptotic error analysis of higher order FEM and CIP-FEM for Helmholtz equation with high wave number. SIAM J. Numer. Anal. 53(2), 782–804 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Farhat, C., Tezaur, R., Toivanen, J.: A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers. Int. J. Numer. Methods Eng. 78(13), 1513–1531 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feng, X., Wu, H.: Hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comp. 80(276), 1997–2024 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gabard, G.: Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comput. Phys. 225, 1961–1984 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gittelson, C., Hiptmair, R., Perugia, I.: Plane wave discontinuous Galerkin methods: analysis of the h-version. ESAIM Math. Model. Numer. Anal. 43, 297–331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, B., Sun, W.: The optimal convergence of the h-p version of the finite element method with quasi-uniform meshes. SIAM J. Numer. Anal. 45, 698–730 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hetmaniuk, U.: Stability estimates for a class of Helmholtz problems. Commun. Math. Sci. 5, 665–678 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hiptmair, R., Moiola, A., Perugia, I.: Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version. SIAM J. Numer. Anal. 49(1), 264–284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hiptmair, R., Moiola, A., Perugia, I.: Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comp. 82, 247–268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Howartha, C., Childs B, P., Moiola, A.: Implementation of an interior point source in the ultra weak variational formulation through source extraction. J. Comput. Appl. Math. 271, 295–306 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, Q., Yuan, L.: A weighted variational formulation based on plane wave basis for discretization of Helmholtz equations. Int. J. Numer. Anal. Model. 11, 587–607 (2014)

    MathSciNet  Google Scholar 

  22. Hu, Q., Yuan, L.: A plane wave least-squares method for time-harmonic Maxwell’s equations in absorbing media. SIAM J. Sci. Comput. 36, A1911–A1936 (2014)

    Article  MathSciNet  Google Scholar 

  23. Huttunen, T., Malinen, M., Monk, P.: Solving Maxwell’s equations using the ultra weak variational formulation. J. Comput. Phys. 223, 731–758 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moiola, A., Hiptmair, R., Perugia, I.: Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 62, 809–837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Monk, P.: Finite Element Methods for Maxwell’s Equation. Oxford University Press (2003)

  26. Monk, P., Wang, D.: A least-squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Engrg. 175, 121–136 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Riou, H., Ladevèze, P., Sourcis, B.: The multiscale VTCR approach applied to acoustics problems. J. Comput. Acous. 16, 487–505 (2008)

    Article  MATH  Google Scholar 

  28. Riou, H., Ladevèze, P., Sourcis, B., Faverjon, B., Kovalevsky, L.: An adaptive numerical strategy for the medium-frequency analysis of helmholtz’s problem. J. Comput. Acous. 20(1) (2012)

  29. Sloane, N.: Tables of spherical codes, http://neilsloane.com/packings/dim3 (2014)

  30. Tezaur, R., Farhat, C.: Three-dimensional directional discontinuous Galerkin elements with plane waves and lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engng. 66(5), 796–815 (2006)

    Article  MATH  Google Scholar 

  31. Trefftz, E.: Ein gegenstuck zum ritzschen verfahren. Sec. Inte. Cong. Appl. Mech., 131–137 (1926)

Download references

Acknowledgments

The authors wish to thank the anonymous referee for many insightful comments which led to great improvement in the results and the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiya Hu or Long Yuan.

Additional information

Communicated by: Karsten Urban

The first author was supported by the Natural Science Foundation of China G11571352. The second author was supported by China NSF under the grant 11501529 and Qingdao applied basic research project under the grant 17-1-1-9-jch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Yuan, L. A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. Adv Comput Math 44, 245–275 (2018). https://doi.org/10.1007/s10444-017-9542-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9542-z

Keywords

Mathematics Subject Classification (2010)

Navigation