Skip to main content
Log in

Variational integrators for orbital problems using frequency estimation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work, we present a new derivation of higher order variational integration methods that exploit the phase lag properties for numerical integrations of systems with oscillatory solutions. More specifically, for the derivation of these integrators, the action integral along any curve segment is defined using a discrete Lagrangian that depends on the endpoints of the segment and on a number of intermediate points of interpolation. High order integrators are then obtained by writing down the discrete Lagrangian at any time interval as a weighted sum of the Lagrangians corresponding to a set of the chosen intermediate points. The respective positions and velocities are interpolated using trigonometric functions. The methods derived this way depend on a frequency, which in general needs to be accurately estimated. The new methods, which improve the phase lag characteristics by re-estimating the frequency at every time step, are presented and tested on the general N-body problem as numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Engquist, B., Fokas, A., Hairer, E., Iserles, A.: Highly Oscillatory Problems. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  2. Wendlandt, J., Marsden, J.: Mechanical integrators derived from a discrete variational principle. Phys. D 106, 223–246 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kane, C., Marsden, J., Ortiz, M.: Symplectic-energy-momentum preserving variational integrators. J. Math. Phys. 40, 3353–3371 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Marsden, J., West, M.: Discrete mechanics and variational integrators. Acta Numerica 10, 357–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the störmer-verlet method. Acta Numerica 12, 399–450 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics, Cambridge (2004)

    MATH  Google Scholar 

  7. Ober-Blöbaum, S., Saake, N.: Construction and analysis of higher order Galerkin variational integrators. Adv. Comput. Math. 41, 955–986 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Campos, C.M., Ober-Blöbaum, S., Trélat, E.: High order variational integrators in the optimal control of mechanical systems. Discrete Contin. Dyn. Syst. A 35, 4193–4223 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ober-Blöbaum, S.: Galerkin variational integrators and modified symplectic Runge-Kutta methods. IMA J. Numer. Anal. 37, 375–406 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brusca, L., Nigro, L.: A one-step method for direct integration of structural dynamic equations. Internat. J. Numer. Methods Engnr. 15, 685–699 (1980)

    Article  MATH  Google Scholar 

  11. Van de Vyver, H.: A fourth-order symplectic exponentially fitted integrator. Comput. Phys. Commun. 174, 255–262 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Num. Math. 19, 65–75 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ixaru, L.Gr., Vanden Berghe, G.: Exponential Fitting. Kluwer Academic Publishers, Dordrecht (2004)

    Book  MATH  Google Scholar 

  15. Cappiello, M., Nicola, F.: Regularity and decay of solutions of nonlinear harmonic oscillators. Adv. Math. 229, 1266–1299 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kosmas, O.T., Vlachos, D.S.: Phase-fitted discrete Lagrangian integrators. Comput. Phys. Commun. 181, 562–568 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kosmas, O.T., Leyendecker, S.: Phase lag analysis of variational integrators using interpolation techniques. PAMM Proc. Appl. Math. Mech. 12, 677–678 (2012)

    Article  Google Scholar 

  18. Stern, A., Grinspun, E.: Implicit-explicit integration of highly oscillatory problems. SIAM Multiscale Model. Simul. 7, 1779–1794 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leok, M., Zhang, J.: Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 31, 1497–1532 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. IMA J. Appl. Math. 18, 189–202 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: the Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  22. Kosmas, O.T., Vlachos, D.S.: Local path fitting: a new approach to variational integrators. J. Comput. Appl. Math. 33, 2632–2642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kosmas, O.T.: Charged particle in an electromagnetic field using variational integrators. ICNAAM Numer. Anal. Appl. Math. 1389, 1927–1931 (2011)

    Google Scholar 

  24. Kosmas, O.T., Leyendecker, S.: Analysis of higher order phase fitted variational integrators. Adv. Comput. Math. 42, 605–619 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kosmas, O.T., Leyendecker, S.: Stability analysis of high order phase fitted variational integrators. In: Proceedings of WCCM XI - ECCM V - ECFD VI, vol. 1389, pp. 548–556 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odysseas Kosmas.

Additional information

Communicated by: Tom Lyche

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosmas, O., Leyendecker, S. Variational integrators for orbital problems using frequency estimation. Adv Comput Math 45, 1–21 (2019). https://doi.org/10.1007/s10444-018-9603-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9603-y

Keywords

Mathematics Subject Classification (2010)

Navigation