Skip to main content
Log in

Virtual element methods for the three-field formulation of time-dependent linear poroelasticity

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A virtual element discretisation for the numerical approximation of the three-field formulation of linear poroelasticity introduced in R. Oyarzúa and R. Ruiz-Baier, (SIAM J. Numer. Anal. 54 2951–2973, 2016) is proposed. The treatment is extended to include also the transient case. Appropriate poroelasticity projector operators are introduced and they assist in deriving energy bounds for the time-dependent discrete problem. Under standard assumptions on the computational domain, optimal a priori error estimates are established. These estimates are valid independently of the values assumed by the dilation modulus and the specific storage coefficient, implying that the formulation is locking-free. Furthermore, the accuracy of the method is verified numerically through a set of computational tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmed, E., Nordbotten, J.M., Radu, F.A.: Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems. J. Comput. Appl. Math. 364, 112312 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anaya, V., Bendahmane, M., Mora, D., Sepúlveda, M.: A virtual element method for a nonlocal FitzHugh-Nagumo model of cardiac electrophysiology. IMA J.Numer.Anal. 40(2), 1544–1576 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anaya, V., De Wijn, Z., Gómez-Vargas, B., Mora, D., Ruiz Baier, R.: Rotation-based mixed formulations for an elasticity-poroelasticity interface problem. SIAM J.Sci.Comput. 42(1), B225–B249 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J.Numer.Anal. 52, 386–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A c1 virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54, 36–56 (2016)

    Article  MATH  Google Scholar 

  7. Arega, F., Hayter, E.: Coupled consolidation and contaminant transport model for simulating migration of contaminants through the sediment and a cap. Appl. Math. Model. 32, 2413–2428 (2008)

    Article  MATH  Google Scholar 

  8. Asadi, R., Ataie-Ashtiani, B., Simmons, C.T.: Finite volume coupling strategies for the solution of a Biot consolidation model. Comput. Geotech. 55, 494–505 (2014)

    Article  Google Scholar 

  9. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math.Models Methods Appl.Sci. 23, 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26, 729–750 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: Math. Model. Numer. Anal. 51, 509–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beirão da Veiga, L., Mora, D.: A mimetic discretization of the Reissner-Mindlin plate bending problem. Numer. Math. 117, 425–462 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Beirão da Veiga, L., Mora, D., Rivera, G.: Virtual Elements for a shear-deflection formulation of Reissner-Mindlin plates. Math. Comp. 88, 149–178 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boffi, D., Botti, M., Di Pietro, D.A.: A nonconforming high-order method for the Biot problem on general meshes. SIAM J.Sci.Comput. 38, A1508–A1537 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Borregales, M., Radu, F.A., Kumar, K., Nordbotten, J.M.: Robust iterative schemes for nonlinear poromechanics. Comput. Geosci 22, 1021–1038 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Both, J.W., Borregales, M., Nordbotten, J.M., Kumar, K., Radu, F.A.: Robust fixed stress splitting for Biot’s equations in heterogeneous media. Appl. Math. Lett. 68, 101–108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Botti, L., Botti, M., A. Daniele Di Pietro: An abstract analysis framework for monolithic discretisations of poroelasticity with application to Hybrid High-Order methods, Comput.Math.Appl. (Available onlne:https://doi.org/10.1016/j.camwa.2020.06.004) (2020)

  18. Brenner, S.C., Guan, Q., Sung, L.Y.: Some estimates for virtual element methods. Comput. Methods Appl Math. 17, 553–574 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, Springer, New York. xviii+ 397pp (2008)

  20. Cáceres, E., Gatica, G. N.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37, 296–331 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer.Math. 137, 857–893 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J.Numer.Anal. 37, 1317–1354 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Coulet, J., Faille, I., Girault, V., Guy, N., Nataf, F.: A fully coupled scheme using virtual element method and finite volume for poroelasticity. Comput.Geosci. 24, 381–403 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fu, G.: A high-order HDG method for the Biot’s consolidation model. Comput.Math.Appl. 77, 237–252 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gaspar, F.J., Lisbona, F.J. and Vabishchevich, P.N.: Finite difference schemes for poroelastic problems. Comput.Methods Appl.Math. 2, 132–142 (2002)

    Article  MathSciNet  Google Scholar 

  26. Girault, V., Pencheva, G., Wheeler, M.F., Wildey, T.: Domain decomposition for poroelasticity and elasticity with DG jumps and mortars. Math. Models methods appl Sci. 21, 169–213 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and algorithms. Springer Series in Computational Mathematics. (5) x + 374pp (1986)

  28. Holden, H., Karlsen, K.H., Lie, K.A., Risebro, N.H.: Splitting Methods for Partial Differential Equations with Rough Solutions: Analysis and MATLAB programs. European Mathematical Society (2010)

  29. Hong, Q., Kraus, J.: Parameter-robust stability of classical three-field formulation of Biot’s consolidation model. Electron. Trans. Numer. Anal. 48, 202–226 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hu, X., Rodrigo, C., Gaspar, F.J., Zikatanov, L.T.: A non-conforming finite element method for the Biot’s consolidation model in poroelasticity. J. Comput. Appl. Math. 310, 143–154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kim, J., Tchelepi, H.A., Juanes, R.: Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics. SPE J. 16(02), 119084 (2011)

    Article  MATH  Google Scholar 

  32. Kolesov, A.E., Vabishchevich, P.N., Vasilyeva, M.V.: Splitting schemes for poroelasticity and thermoelasticity problems. Comput. Math. Appl. 67, 2185–2198 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kumar, S., Oyarzúa, R., Ruiz-Baier, R., Sandilya, R.: Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity. ESAIM: Math.Model.Numer.Anal. 54(1), 273–299 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lee, J.J.: Analysis and preconditioning of parameter-robust finite element methods for Biot’s consolidation model. arXiv:1806.11566

  35. Lee, J.J., Mardal, K.-A., Winther, R.: Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J.Sci.Comput. 39, A1–A24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lee, J.J.: Robust three-field finite element methods for Biot’s consolidation model in poroelasticity. Bit Numer Math 58, 347–372 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lee, J.J., Piersanti, E., Mardal, K.-A., Rognes, M.: A mixed finite element method for nearly incompressible multiple-network poroelasticity. SIAM J.Sci.Comput. 41, A722–A747 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mauck, R.T., Hung, C.T., Ateshian, G.A.: Modelling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J. Biomech. Engrg. 125, 602–614 (2003)

    Article  Google Scholar 

  39. Mikelić, A., Wang, B., Wheeler, M.F.: Numerical convergence study of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 18, 325–34 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17, 455–461 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mora, D., Rivera, G.: A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations. IMA J.Numer.Anal. 40(1), 322–357 (2020)

    Article  MathSciNet  Google Scholar 

  42. Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl.Sci. 25, 1421–1445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Murad, M.A., Thomée, V., Loula, A.F.D.: Asymptotic behavior of semi discrete finite-element approximations of Biot’s consolidation problem. SIAM J.Numer.Anal. 33, 1065–1083 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Naumovich, A.: On finite volume discretization of the three-dimensional Biot poroelasticity system in multilayer domains. Comput. Methods Appl.Math. 6, 306–325 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Oyarzúa, R., Ruiz-Baier, R.: Locking-free finite element methods for poroelasticity. SIAM J.Numer.Anal. 54, 2951–2973 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Perugia, I., Pietra, P., Russo, A.: A plane wave virtual element method for the Helmholtz problem. ESAIM Math. Model. Numer. Anal. 50, 783–808 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rivière, B., Tan, J., Thompson, T.: Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations. Comput.Math.Appl. 73, 666–683 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251, 310–340 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tang, X., Liu, Z., Zhang B., Feng, M.: On the locking-free three-field virtual element methods for Biot’s consolidation model in poroelasticity, ESAIM: Math.Model.Numer.Anal. (Available online:https://doi.org/10.1051/m2an/2020064) (2020)

  50. Vacca, G.: An h1-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl.Sci. 28, 159–194 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differential Equations 31, 2110–2134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Verma, N., Gómez-Vargas, B., De Oliveira Vilaca, L.M. , Kumar, S., Ruiz-Baier, R.: Well-posedness and discrete analysis for advection-diffusion-reaction in poroelastic media. Applic. Anal. in press (2020)

  53. Yi, S.-Y.: A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Methods Partial Differential Equations 29(5), 1749–1777 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yi, S.-Y.: A study of two modes of locking in poroelasticity. SIAM J.Numer.Anal. 55, 1915–1936 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the valuable comments by two anonymous reviewers, whose suggestions led to numerous improvements to the manuscript.

Funding

This work has been partially supported by CONICYT (Chile) through projects FONDECYT 1170473, FONDECYT 1180913, CMM, project ANID/PIA/AFB170001, and CRHIAM, project ANID/FONDAP/15130015; by the HPC-Europa3 Transnational Access Grant HPC175QA9K; and by the Department of Science and Technology (DST-SERB), India through MATRICS grant MTR/2019/000519.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvesh Kumar.

Additional information

Communicated by: Lourenco Beirao da Veiga

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Proof of Theorem 4.3

Appendix 1: Proof of Theorem 4.3

As in the semi-discrete case, we split the individual errors as

$$ \begin{array}{@{}rcl@{}} &&\boldsymbol{u}(t_{n}) - {\boldsymbol{u}_{h}^{n}} = (\boldsymbol{u}(t_{n}) - I^{h}_{\boldsymbol{u}} \boldsymbol{u}(t_{n})) + (I^{h}_{\boldsymbol{u}} \boldsymbol{u}(t_{n})- {\boldsymbol{u}_{h}^{n}}):= E_{\boldsymbol{u}}^{I,n} + E_{\boldsymbol{u}}^{A,n}, \\ &&\psi(t_{n}) - {\psi_{h}^{n}} = (\psi(t_{n}) - I^{h}_{\psi} \psi(t_{n})) + (I^{h}_{\psi} \psi(t_{n})- {\psi_{h}^{n}}):= E_{\psi}^{I,n} + E_{\psi}^{A,n}, \\ &&p(t_{n}) - {p_{h}^{n}} = (p(t_{n}) - {I^{h}_{p}} p(t_{n})) + ({I^{h}_{p}} p(t_{n})- {p_{h}^{n}}):= E_{p}^{I,n} + E_{p}^{A,n}. \end{array} $$

Then, from estimate (4.2a) and following the steps of the proof of Theorem 4.2, we get the bounds:

$$ \begin{array}{@{}rcl@{}} &&\|E_{\boldsymbol{u}}^{I,n} \|_{1} \leq C h (|\boldsymbol{u}(t_{n})|_{2} + |\psi(t_{n})|_{1}) \le C h (| \boldsymbol{u}(0) |_{2} + | \psi(0) |_{1}\\ &&+ \|\partial_{t}\boldsymbol{u}\|_{\boldsymbol{L}^{1}(0,t_{n}; [H^{2}({\varOmega})]^{2})} + \|\partial_{t} \psi\|_{L^{1}(0,t_{n}; H^{1}({\varOmega}))} ), \end{array} $$
(1)
$$ \begin{array}{@{}rcl@{}} \|E_{\psi}^{I,n} \|_{0} &\leq& C h (| \boldsymbol{u}(0) |_{2} + | \psi(0) |_{1} + \|\partial_{t}\boldsymbol{u}\|_{\boldsymbol{L}^{1}(0,t_{n}; [H^{2}({\varOmega})]^{2})}\\ &&+ \|\partial_{t}\psi\|_{L^{1}(0,t_{n}; H^{1}({\varOmega}))} ), \end{array} $$
(2)
$$ \begin{array}{@{}rcl@{}} &&\|E_{p}^{I,n} \|_{1} \leq C h (| p(0) |_{2} + \|\partial_{t} p\|_{L^{1}(0,t_{n}; H^{2}({\varOmega}))}). \end{array} $$
(3)

From Eqs. 4.1a, 3.17a, and 2.3a, we readily get:

$$ {a_{1}^{h}}(E_{\boldsymbol{u}}^{A,n},\boldsymbol{v}_{h}) + b_{1}(\boldsymbol{v}_{h}, E_{\psi}^{A,n}) = F^{n}(\boldsymbol{v}_{h}) - F^{h,n}(\boldsymbol{v}_{h}). $$
(A.2)

We then use Eqs. 4.1b and 3.21, and proceed to differentiate (2.3c) with respect to time. This implies

$$ \begin{array}{@{}rcl@{}} &&b_{1}(E_{\boldsymbol{u}}^{A,n} - E_{\boldsymbol{u}}^{A,n-1}, \phi_{h}) + b_{2}(E_{p}^{A,n}-E_{p}^{A,n-1}, \phi_{h})-a_{3}(E_{\psi}^{A,n} - E_{\psi}^{A,n-1}, \phi_{h}) \\ && \quad \quad = b_{1}((\boldsymbol{u}(t_{n}) - \boldsymbol{u}(t_{n-1}))-({\varDelta} t) \partial_{t} \boldsymbol{u}(t_{n}), \phi_{h}) + b_{2}(({I_{p}^{h}} p(t_{n}) - {I_{p}^{h}} p(t_{n-1}))\\ &&\quad\quad\quad -({\varDelta} t) \partial_{t} p(t_{n}), \phi_{h}) \\ &&\quad\quad\quad -a_{3}((I_{\psi}^{h} \psi(t_{n})-I_{\psi}^{h} \psi(t_{n-1}))-({\varDelta} t) \partial_{t} \psi (t_{n}), \phi_{h}). \end{array} $$
(A.3)

After choosing \(\boldsymbol {v}_{h} = E_{\boldsymbol {u}}^{A,n} - E_{\boldsymbol {u}}^{A,n-1 } \) in Eq. A.2 and \(\phi _{h} = - E_{\psi }^{A,n}\) in Eq. A.3 and adding the outcomes, we readily get:

$$ \begin{array}{@{}rcl@{}} &&{a_{1}^{h}}(E_{\boldsymbol{u}}^{A,n}, E_{\boldsymbol{u}}^{A,n} - E_{\boldsymbol{u}}^{A,n-1}) + a_{3}(E_{\psi}^{A,n} - E_{\psi}^{A,n-1}, E_{\psi}^{A,n}) - b_{2}(E_{p}^{A,n} - E_{p}^{A,n-1}, E_{\psi}^{A,n}) \\ &&= \rho ((t_{n}) - {^{n}_{h}}, E_{\boldsymbol{u}}^{A,n} - E_{\boldsymbol{u}}^{A,n-1 } )_{0, {\varOmega}} - b_{1}((\boldsymbol{u}(t_{n}) - \boldsymbol{u}(t_{n-1})) - ({\varDelta} t) \partial_{t} \boldsymbol{u}(t_{n}), E_{\psi}^{A,n}) \\ &&\quad\quad- b_{2}(({I_{p}^{h}} p(t_{n}) - {I_{p}^{h}} p(t_{n-1})) - ({\varDelta} t) \partial_{t} p(t_{n}), E_{\psi}^{A,n}) \\ &&\quad\quad+ a_{3}((I_{\psi}^{h} \psi(t_{n}) - I_{\psi}^{h} \psi(t_{n-1})) - ({\varDelta} t) \partial_{t} \psi (t_{n}), E_{\psi}^{A,n}). \end{array} $$
(A.4)

Next, and as a consequence of using Eqs. 4.1c, 3.7b, and 2.3b with \(q_{h} = E_{p}^{A,n}\), we are left with

$$ \begin{array}{@{}rcl@{}} &&\tilde{a}_{2}^{h}(E_{p}^{A,n} - E_{p}^{A,n-1}, E_{p}^{A,n}) + {\varDelta} t {a_{2}^{h}}(E_{p}^{A,n}, E_{p}^{A,n}) - b_{2}(E_{p}^{A,n}, E_{\psi}^{A,n} - E_{\psi}^{A,n-1}) \\ && = {\varDelta} t (\ell(t_{n})- {\ell^{n}_{h}}, E_{p}^{A,n} )_{0, {\varOmega}} + \tilde{a}_{2}^{h}({I^{h}_{p}} p(t_{n}) - {I^{h}_{p}} p(t_{n-1}), E_{p}^{A,n}) \\ && \quad \quad- \tilde{a}_{2}(({\varDelta} t) \partial_{t} p(t_{n}), E_{p}^{A,n}) + b_{2}(E_{p}^{A,n}, ({\varDelta} t) \partial_{t} \psi - (I^{h}_{\psi} \psi(t_{n})) - I^{h}_{\psi} \psi(t_{n-1})). \end{array} $$
(A.5)

If we then add the resulting (A.4)–(A.5) and repeat the same arguments used in deriving (3.11), we can assert that

$$ \begin{array}{@{}rcl@{}} &&a_{3}(E_{\psi}^{A,n} - E_{\psi}^{A,n-1}, E_{\psi}^{A,n}) - b_{2}(E_{p}^{A,n} - E_{p}^{A,n-1}, E_{\psi}^{A,n})\\ &&\quad\quad- b_{2}(E_{p}^{A,n}, E_{\psi}^{A,n} - E_{\psi}^{A,n-1}) + \tilde{a}_{2}^{h}(E_{p}^{A,n} - E_{p}^{A,n-1}, E_{p}^{A,n}) \\ &&= ({\varDelta} t) \bigg(c_{0}({\varDelta}_{t} E_{p}^{A,n} , E_{p}^{A,n})_{0,{\varOmega}} + \frac{1}{\lambda} \sum\limits_{K} \big(\alpha^{2} ({\varDelta}_{t} (I - {\varPi^{0}_{K}}) E_{p}^{A,n}, (I - {\varPi^{0}_{K}}) E_{p}^{A,n})_{0,K} \\ & &\quad\quad-({\delta}_{t} (\alpha {\varPi^{0}_{K}} E_{p}^{A,n} - E_{\psi}^{A,n}), \alpha {\varPi^{0}_{K}} E_{p}^{A,n} - E_{\psi}^{A,n})_{0,K} \big) \bigg), \end{array} $$

The left-hand side can be bounded by using the inequality (3.24) and then summing over n we get:

$$ \begin{array}{@{}rcl@{}} &&\mu \| \boldsymbol{\varepsilon}(E_{\boldsymbol{u}}^{A,n})\|_{0}^{2} + c_{0} \| E_{p}^{A,n}\|_{0}^{2} + ({\varDelta} t) \frac{\kappa_{\min}}{\eta} \sum\limits_{j=1}^{n} \| \nabla E_{p}^{A,j} \|_{0}^{2} \\ &&\qquad + (1/\lambda) \sum\limits_{K}\bigg(\alpha^{2} \| (I- {\varPi^{0}_{K}}) E_{p}^{A,n} \|_{0,K}^{2} + \| \alpha {\varPi^{0}_{K}} E_{p}^{A,n} - E_{\psi}^{A,n}\|_{0,K}^{2} \bigg) \\ &&\le \mu \| \boldsymbol{\varepsilon}(E_{\boldsymbol{u}}^{A,0})\|_{0}^{2} + c_{0} \| E_{p}^{A,0}\|_{0}^{2} + (1/\lambda) \sum\limits_{K}\\&&\qquad\times\bigg(\alpha^{2} \| (I- {\varPi^{0}_{K}}) E_{p}^{A,0} \|_{0,K}^{2} + \| \alpha {\varPi^{0}_{K}} E_{p}^{A,0} - E_{\psi}^{A,0} \|_{0,K}^{2} \bigg) \\ &&\qquad+ \underbrace{ \sum\limits_{j=1}^{n} \rho (\boldsymbol{b}(t_{j}) - {\boldsymbol{b}^{j}_{h}}, E_{\boldsymbol{u}}^{A,j}- E_{\boldsymbol{u}}^{A,j-1} )_{0,{\varOmega}}}_{=:L_{1}} + \underbrace{ \sum\limits_{j=1}^{n} {\varDelta} t (\ell(t_{j})- {\ell^{j}_{h}}, E_{p}^{A,j} )_{0,{\varOmega}}}_{=:L_{2}} \\ && \qquad- \underbrace{ \sum\limits_{j=1}^{n} b_{1}((\boldsymbol{u}(t_{j}) - \boldsymbol{u}(t_{j-1})) - ({\varDelta} t) \partial_{t} \boldsymbol{u}(t_{j}), E_{\psi}^{A,j})}_{=:L_{3}} \\ &&\qquad- \underbrace{ \sum\limits_{j=1}^{n} b_{2}(({I_{p}^{h}} p(t_{j}) - {I_{p}^{h}} p(t_{j-1})) - ({\varDelta} t) \partial_{t} p(t_{j}), E_{\psi}^{A,j})}_{=:L_{4}} \\ &&\qquad+ \underbrace{ \sum\limits_{j=1}^{n} a_{3}((I_{\psi}^{h} \psi(t_{j}) - I_{\psi}^{h} \psi(t_{j-1})) - ({\varDelta} t) \partial_{t} \psi (t_{j}), E_{\psi}^{A,j}) }_{:=L_{5}} \\ &&\qquad+ \underbrace{ \sum\limits_{j=1}^{n} (\tilde{a}_{2}^{h}({I^{h}_{p}} p(t_{j}) - {I^{h}_{p}} p(t_{j-1}), E_{p}^{A,j}) - \tilde{a}_{2}(({\varDelta} t) \partial_{t} p(t_{j}), E_{p}^{A,j}) )}_{:=L_{6}} \\ && \qquad+ \underbrace{ \sum\limits_{j=1}^{n} b_{2}(E_{p}^{A,j}, ({\varDelta} t) \partial_{t} \psi - (I^{h}_{\psi} \psi(t_{j}) - I^{h}_{\psi} \psi(t_{j-1}))}_{:=L_{7}}. \end{array} $$

We bound the term L1 with the help of formula (3.25), the estimates of projection \(\boldsymbol \varPi ^{0,0}_{K}\), applying Taylor expansion, and using generalised Young’s inequality. This gives

$$ \begin{array}{@{}rcl@{}} L_{1} &=& \rho (((\boldsymbol{b} - \boldsymbol{b}_{h})(t_{n}), E_{\boldsymbol{u}}^{A,n})_{0,{\varOmega}} - ((\boldsymbol{b} - \boldsymbol{b}_{h})(0), E_{\boldsymbol{u}}^{A,0})_{0,{\varOmega}} \\&&- \sum\limits_{j=1}^{n} ({\varDelta} t)({\varDelta}_{t}(\boldsymbol{b} - \boldsymbol{b}_{h})(t_{j}), E_{\boldsymbol{u}}^{A,j-1})_{0,{\varOmega}}) ) \\ &\le& \frac{\mu}{2} \| \boldsymbol{\varepsilon} (E_{\boldsymbol{u}}^{A,n})\|_{0}^{2} + C_{1} \Big(\frac{\rho}{\mu} h|b(0)|_{1}~ \mu \| \boldsymbol{\varepsilon} (E_{\boldsymbol{u}}^{A,0})\|_{0} + \frac{\rho^{2}}{\mu}h^{2} \max\limits_{1 \le j \le n} |\boldsymbol{b}(t_{j}) |_{1}^{2} \\ &&+ ({\varDelta} t) ~ h \sum\limits_{j=1}^{n} \frac{\rho}{\mu} \left( | \partial_{t} \boldsymbol{b}^{j} |_{1} + \left( {\varDelta} t {\int}_{t_{j-1}}^{t_{j}} | \partial_{tt} \boldsymbol{b} (s)|_{1}^{2} \mathrm{d}s \right)^{1/2} \right) \mu \| \boldsymbol{\varepsilon}(E_{\boldsymbol{u}}^{A,j-1}) \|_{0} \Big). \end{array} $$

Then, the estimate satisfied by the projection \({\varPi ^{0}_{K}}\) along with Poincaré and Young’s inequalities yields:

$$ \begin{array}{@{}rcl@{}} L_{2} & \le& C_{2} \sum\limits_{j=1}^{n} ({\varDelta} t) h | \ell(t_{j})|_{1} \|\nabla E_{p}^{A,j}\|_{0} \le C_{2} \sum\limits_{j=1}^{n} ({\varDelta} t) \frac{\eta }{\kappa_{\min}} h^{2} | \ell(t_{j})|_{1}^{2} \\&&+ ({\varDelta} t) \frac{\kappa_{\min}}{6 \eta} \sum\limits_{j=1}^{n} \| \nabla E_{p}^{A,j}\|_{0}^{2}. \end{array} $$

The discrete inf-sup condition (3.6) implies that

$$ \begin{array}{@{}rcl@{}} \|E_{\psi}^{A,j} \|_{0} \le C (h |\boldsymbol{b}(t_{j})|_{1} + \|\boldsymbol{\varepsilon}(E_{\boldsymbol{u}}^{A,j}) \|_{0} ). \end{array} $$
(A.6)

Applying an expansion in Taylor series, together with Eq. A.6, the Cauchy-Schwarz, and Young inequalities, enables us to write

$$ \begin{array}{@{}rcl@{}} L_{3} & \le C \sum\limits_{j=1}^{n} \left( ({\varDelta} t)^{3} {\int}_{t_{j-1}}^{t_{j}} \| \partial_{tt} \boldsymbol{u} (s)\|_{0}^{2} \right)^{1/2} (h |\boldsymbol{b}(t_{j})|_{1} + \|\boldsymbol{\varepsilon}(E_{\boldsymbol{u}}^{A,j}) \|_{0} ). \end{array} $$

Then, after using the estimates of the projection \({I_{p}^{h}}\) (4.2b), (A.6), and applying again Cauchy-Schwarz inequality, we get

$$ \begin{array}{@{}rcl@{}} L_{4} \!&\le&\! C \frac{\alpha}{\lambda} \sum\limits_{j=1}^{n} \left( \| {I_{p}^{h}} (p(t_{j}) - p(t_{j-1})) - (p(t_{j}) - p(t_{j-1})) \|_{0} + \| (p(t_{j}) - p(t_{j-1})) \right.\\&&\left.- ({\varDelta} t) \partial_{t} p(t_{j}) \|_{0}\vphantom{I_{p}^{h}} \right) \|E_{\psi}^{A,j} \|_{0} \\ \!&\le&\! C \frac{\alpha}{\lambda} \sum\limits_{j=1}^{n} \left( h^{2} \left( ({\varDelta} t) {\int}_{t_{j-1}}^{t_{j}}| \partial_{t}p(s)|_{2}^{2} \mathrm{d}s \right)^{1/2} + \left( ({\varDelta} t )^{3} {\int}_{t_{j-1}}^{t_{j}} \| \partial_{tt} p(s ) \|_{0}^{2} \mathrm{d}s\right)^{1/2} \right) \\&&\times\|E_{\psi}^{A,j} \|_{0}\\ \!&\le&\! C \frac{\alpha}{\lambda} \sum\limits_{j=1}^{n} \left( h^{2} \left( ({\varDelta} t) {\int}_{t_{j-1}}^{t_{j}}| \partial_{t}p(s)|_{2}^{2} \mathrm{d}s \right)^{1/2} + \left( ({\varDelta} t )^{3} {\int}_{t_{j-1}}^{t_{j}} \| \partial_{tt} p(s ) \|_{0}^{2} \mathrm{d}s\right)^{1/2} \right)\\&&\times\left( \rho h |\boldsymbol{b}(t_{j})|_{1} + \|\boldsymbol{\varepsilon}(E_{\boldsymbol{u}}^{A,j}) \|_{0} \right). \end{array} $$

The stability of a3(⋅,⋅) and the proof for the bound of L4 gives

$$ \begin{array}{@{}rcl@{}} L_{5}&\le& C(1/ \lambda ) \sum\limits_{j=1}^{n} \| (I_{\psi}^{h} \psi(t_{j}) - I_{\psi}^{h} \psi(t_{j-1})) \\&&- ({\varDelta} t) \partial_{t} \psi (t_{j}) \|_{0} (\rho h |\boldsymbol{b}(t_{j})|_{1} + \|\boldsymbol{\varepsilon}(E_{\boldsymbol{u}}^{A,j}) \|_{0} ) \\ &\le& C(1/ \lambda ) \sum\limits_{j=1}^{n} \left( h^{2} \left( ({\varDelta} t) {\int}_{t_{j-1}}^{t_{j}}(| \partial_{t}\boldsymbol{u}(s)|_{2}^{2} + | \partial_{t}\psi(s)|_{1}^{2}) \mathrm{d}s \right)^{1/2} \right.\\&&\left.+ \left( ({\varDelta} t)^{3} {\int}_{t_{j-1}}^{t_{j}} \| \partial_{tt} \psi (s)\|_{0}^{2} \mathrm{d}s \right)^{1/2} \right) \\ &&\times (\rho h |\boldsymbol{b}(t_{j})|_{1} + \|\boldsymbol{\varepsilon}(E_{\boldsymbol{u}}^{A,j}) \|_{0} ). \end{array} $$

The polynomial approximation pπ for fluid pressure, consistency of the bilinear form \(\tilde {a}_{2}^{h}(\cdot , \cdot )\), stability of the bilinear forms \(\tilde {a}_{2}(\cdot , \cdot ), \tilde {a}_{2}^{h}(\cdot , \cdot )\), and the Cauchy-Schwarz, Poincaré and Young’s inequalities gives

$$ \begin{array}{@{}rcl@{}} L_{6} &=& \sum\limits_{j=1}^{n} \Big(\tilde{a}_{2}^{h}(({I^{h}_{p}} p(t_{j}) - {I^{h}_{p}} p(t_{j-1})) - (p_{\pi}(t_{j}) - p_{\pi}(t_{j-1})), E_{p}^{A,j}) \\ &&+ \tilde{a}_{2}((p_{\pi}(t_{j}) - p_{\pi}(t_{j-1})) - (p(t_{j}) - p(t_{j-1})), E_{p}^{A,j}) + \tilde{a}_{2}((p(t_{j}) \\&&- p(t_{j-1})) - ({\varDelta} t) \partial_{t} p(t_{j}), E_{p}^{A,j}) \Big) \\ &\le& C \Big(c_{0} + \frac{\alpha^{2}}{\lambda} \Big) \sum\limits_{j=1}^{n} \bigg(h^{2} \Big(({\varDelta} t) {\int}_{t_{j-1}}^{t_{j}} |\partial_{t} p(s) |_{2}^{2} \mathrm{d}s \Big)^{1/2} \\&&+ \Big(({\varDelta} t)^{3}{\int}_{t_{j-1}}^{t_{j}} \| \partial_{tt} p(s) \|_{0}^{2} \mathrm{d}s \Big)^{1/2} \bigg) \| \nabla E_{p}^{A,j} \|_{0} \\ &\le& C {\Big(c_{0} + \frac{\alpha^{2}}{\lambda} \Big)^{2}} \Big(h^{4} \|\partial_{t} p \|_{L^{2}(0,t_{n};H^{2}({\varOmega}))}^{2} + ({\varDelta} t)^{2} \| \partial_{tt} p \|_{L^{2}(0,t_{n};L^{2}({\varOmega}))}^{2} \Big) \\&&+ {\varDelta} t \frac{\kappa_{\min}}{6 \eta} \sum\limits_{j=1}^{n} \| \nabla E_{p}^{A,j} \|_{0}^{2}. \end{array} $$

The continuity of b2(⋅,⋅), the bound derived for the term L5 and using the Young’s inequality, gives

$$ \begin{array}{@{}rcl@{}} L_{7} & \le& \frac{\alpha}{\lambda} \sum\limits_{j=1}^{n} \| ({\varDelta} t) \partial_{t} \psi(t_{j}) - (I^{h}_{\psi} \psi(t_{j}) - I^{h}_{\psi} \psi(t_{j-1}))\|_{0} \| E_{p}^{A,j}\|_{0} \\ & \le& C {\Big(\frac{\alpha}{\lambda} \Big)^{2}}\bigg(h^{2} (\| \partial_{t} \psi \|_{L^{2}(0,t_{n};H^{1}({\varOmega}))}^{2} + \| \partial_{t} \boldsymbol{u} \|_{\boldsymbol{L}^{2}(0,t_{n};[H^{2}({\varOmega})]^{2})}^{2})\\&&\qquad\qquad+ ({\varDelta} t )^{2} \| \partial_{tt} \psi \|_{L^{2}(0,t_{n};L^{2}({\varOmega}))}^{2} \bigg) \\ && +({\varDelta} t) \frac{\kappa_{\min}}{6 \eta} \sum\limits_{j=1}^{n} \| \nabla E_{p}^{A,j} \|_{0}^{2}. \end{array} $$

In turn, putting together the bounds obtained for all Li’s, \(i=1, \dots , 7\), using the Young’s inequality and Lemma 3.2 concludes that

$$ \begin{array}{@{}rcl@{}} &&\mu \| \boldsymbol{\varepsilon}(E_{\boldsymbol{u}}^{A,n})\|_{0}^{2} + c_{0} \| E_{p}^{A,n}\|_{0}^{2} + ({\varDelta} t) \frac{\kappa_{\min}}{\eta} \sum\limits_{j=1}^{n} \| \nabla E_{p}^{A,j} \|_{0}^{2} \\ && \le C \bigg(\mu \| \boldsymbol{\varepsilon}(E_{\boldsymbol{u}}^{A,0})\|_{0}^{2} + (c_{0} + \alpha^{2}/\lambda) \| E_{p}^{A,0}\|_{0}^{2} + (1/\lambda) \| E_{\psi}^{A,0}\|_{0}^{2} \\&&\quad+ \Big(1 + {\varDelta} t \Big) h^{2} \max\limits_{0 \le j \le n} |\boldsymbol{b}(t_{j}) |_{1}^{2} \\ && \quad + h^{2} {\varDelta} t \sum\limits_{j=1}^{n} (|(t_{j})|_{1}^{2} + ({\varDelta} t) | \partial_{t} \boldsymbol{b} |_{1}^{2} + | \ell(t_{j})|_{1}^{2}) + ({\varDelta} t)^{2} h^{2} \| \partial_{tt} \boldsymbol{b} \|_{L^{2}(0,t_{n};[H^{1}({\varOmega})]^{2})} \\ &&\quad + ({\varDelta} t )^{2} \big((c_{0} + \alpha^{2}/\lambda )^{2} \| \partial_{tt} p \|_{L^{2}(0,t_{n};L^{2}({\varOmega}))}^{2} + \| \partial_{tt} \boldsymbol{u} \|_{\boldsymbol{L}^{2}(0,t_{n};[L^{2}({\varOmega})]^{2})}^{2} \\&&\quad+ {\frac{\alpha^{2}}{\lambda^{2}}} \| \partial_{tt} \psi \|_{L^{2}(0,t_{n};L^{2}({\varOmega}))}^{2} \big)\\ && \quad + h^{2} \big({\frac{\alpha^{2}}{\lambda^{2}}} \| \partial_{t} \psi \|_{L^{2}(0,t_{n};H^{1}({\varOmega}))}^{2} + {\frac{\alpha^{2}}{\lambda^{2}}} \| \partial_{t} \boldsymbol{u}\|_{\boldsymbol{L}^{2}(0,t_{n};[H^{2}({\varOmega})]^{2})}^{2} \\&&\quad+ {(c_{0} + \alpha^{2}/\lambda )^{2}} h^{2} \| \partial_{t}p \|_{L^{2}(0,t_{n};H^{2}({\varOmega}))}^{2} \big) \bigg). \end{array} $$

And finally, the desired result (4.9) holds after choosing \({\boldsymbol {u}_{h}^{0}}: =\boldsymbol {u}_{I}(0)\), \({\psi _{h}^{0}}: = \varPi ^{0,0}\psi (0)\), \({p_{h}^{0}}: = p_{I}(0)\) and applying triangle’s inequality together with Eqs. 1– 3, and A.6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bürger, R., Kumar, S., Mora, D. et al. Virtual element methods for the three-field formulation of time-dependent linear poroelasticity. Adv Comput Math 47, 2 (2021). https://doi.org/10.1007/s10444-020-09826-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09826-7

Keywords

Mathematics Subject Classification 2010

Navigation