Skip to main content
Log in

Comparison of configurations of a four-column simulated moving bed process by multi-objective optimization

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Configurations of a four-column simulated moving bed chromatographic process are investigated by multi-objective optimization. Various existing column configurations are compared through a multi-objective optimization problem. Furthermore, an approach based on an SMB superstructure is applied to find novel configurations which have been found to outperform the standard SMB configuration. An efficient numerical optimization technique is applied to the mathematical model of the SMB process. It has been confirmed that although the optimal configuration highly depends on the purity requirement, the superstructure approach is able to find the most efficient configuration without exploring various existing configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\bar{u}_{D}\) :

Total desorbent velocity supplied to SMB

\(\bar{u}_{F}\) :

Total feed velocity supplied to SMB

Δp max  :

Maximum column pressure

ε b :

Void fraction

ε p :

Upper bound in ε constraint method

C j i (x,t):

Concentration in liquid phase

C j,eq i (x,t):

Equilibrium concentration

C F,i :

Feed concentration

i :

Component

j :

Column index

k :

Darcy constant

K i :

Henry constant

K appli :

Liquid-phase based mass transfer coefficient

L :

Column length

m :

Zone index

N c :

Number of components

N m :

Number of columns in Zone m

N Column :

Number of columns

N COL :

Number of collocation points in a temporal finite element

N FET :

Number of finite elements in temporal domain

N FEX :

Number of finite elements in spatial domain

Prod :

Index of desired product in extract

Pur min  :

Purity demand

q j i (x,t):

Concentration in adsorbent in jth column

Rec min  :

Recovery demand

t step :

Step time

u j :

Liquid velocity in column j

u j D :

Desorbent velocity supplied to column j

u j E :

Extract velocity withdrawn from column j

u j F :

Feed velocity supplied to column j

u j R :

Raffinate velocity withdrawn from column j

u l :

Lower bound on u j

u u :

Upper bound on u j

x :

Distance

References

  • Ching, C.B., Chu, K.H., Hidajat, K., Uddin, M.S.: Comparative study of flow schemes for a simulated countercurrent adsorption separation process. AIChE J. 38, 1744–1750 (1992)

    Article  CAS  Google Scholar 

  • Dünnebier, G., Klatt, K.U.: Modelling and simulation of nonlinear chromatographic separation processes: a comparison of different modelling approaches. Chem. Eng. Sci. 55, 373–380 (2000)

    Article  Google Scholar 

  • Dünnebier, G., Fricke, J., Klatt, K.U.: Optimal design and operation of simulated moving bed chromatographic reactor. Ind. Eng. Chem. Res. 39, 2290–2304 (2000)

    Article  Google Scholar 

  • Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Duxbury, Belmont (1992)

    Google Scholar 

  • Golshan-Shirazi, S., Guiochon, G.: Comparison of the various kinetic models of non-linear chromatography. J. Chromatogr. 603, 1–11 (2003)

    Article  Google Scholar 

  • Hakanen, J., Kawajiri, Y., Miettinen, K., Biegler, L.T.: Interactive multi-objective optimization for simulated moving bed processes. Control Cybern. 36(2), 283–302 (2007)

    Google Scholar 

  • Hakanen, J., Kawajiri, Y., Miettinen, K., Biegler, L.T.: Interactive multi-objective optimization of superstructure SMB processes. Lect. Notes Econ. Math. Syst. (in press)

  • Hashimoto, K., Adachi, S., Noujima, H., Maruyama, H.: Models for the separation of glucose/fructose mixture using a simulated moving bed adsorber. J. Chem. Eng. Jpn. 16(5), 400–406 (1983)

    Article  CAS  Google Scholar 

  • Kawajiri, Y., Biegler, L.T.: Large scale nonlinear programming for asymmetric design and operation of simulated moving beds. J. Chromatogr. A 1133, 226–240 (2006a)

    Article  CAS  Google Scholar 

  • Kawajiri, Y., Biegler, L.T.: Large-scale optimization strategies for zone configuration of simulated moving beds. In: Marquardt, W., Pantelides, C. (eds.) 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, pp. 131–136. Elsevier (2006b)

  • Kawajiri, Y., Biegler, L.T.: A nonlinear programming superstructure for optimal dynamic operations of simulated moving bed processes. Ind. Eng. Chem. Res. 45(25), 8503–8513 (2006c)

    Article  CAS  Google Scholar 

  • Kawajiri, Y., Biegler, L.T.: Optimization strategies for simulated moving bed and PowerFeed processes. AIChE J. 52(4), 1343–1350 (2006d)

    Article  CAS  Google Scholar 

  • Ruthven, D.M., Ching, C.B.: Counter-current and simulated counter-current adsorption separation processes. Chem. Eng. Sci. 44, 1011–1038 (1989)

    Article  CAS  Google Scholar 

  • Toumi, A., Hanisch, F., Engell, S.: Optimal operation of continuous chromatographic processes: mathematical optimization of the VARICOL process. Ind. Eng. Chem. Res. 41, 4328–4337 (2002)

    Article  CAS  Google Scholar 

  • van Deemter, J.J., Zuiderweg, F.J., Klinkenberg, A.: Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 5, 271–289 (1956)

    Article  Google Scholar 

  • Wächter, A., Biegler, L.T.: On the implementation of an interior point filter line search algorithm for large-scale nonlinear programming. Math. Prog. 106(1), 25–57 (2005)

    Article  Google Scholar 

  • Zhang, Z., Hidajat, K., Ray, A.K., Morbidelli, M.: Multiobjective optimization of SMB and Varicol processes for chiral separation. AIChE J. 48(12), 2800–2816 (2002)

    Article  CAS  Google Scholar 

  • Zhang, Z., Mazzotti, M., Morbidelli, M.: Continuous chromatographic processes with a small number of columns: comparison of simulated moving bed with Varicol, PowerFeed, and ModiCon. Korean J. Chem. Eng. 21(2), 454–464 (2004)

    Article  CAS  Google Scholar 

  • Ziomek, G., Antos, D., Tobiska, L., Seidel-Morgenstern, A.: Comparison of possible arrangements of five identical columns in preparative chromatography. J. Chromatogr. A 1116, 179–188 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Kawajiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawajiri, Y., Biegler, L.T. Comparison of configurations of a four-column simulated moving bed process by multi-objective optimization. Adsorption 14, 433–442 (2008). https://doi.org/10.1007/s10450-007-9074-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-007-9074-9

Keywords

Navigation