Skip to main content
Log in

Prediction of single component adsorption isotherms on microporous adsorbents

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The adsorption of gases on microporous solids is a fundamental physical interaction which occurs in many technical processes, e.g. the heterogeneous catalysis or the purification of gases. In this context the adsorption equilibrium can determine the velocity and/or the capacity of the process. Therefore, it has to be known for designing purposes. The aim of this work has been the a priori prediction of the adsorption equilibria of arbitrary gases on microporous solids like zeolites and active carbon based only on the molecular properties of the adsorptive and the adsorbent. The adsorption isotherm is described completely from the Henry region over the transition zone to the saturation region. The quality of the model permits a first approximation of the planned process without further experimental effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Dimensionless interaction parameter

C i,j :

Interaction constant in J m6

E :

Potential energy between two molecules or atoms in J

Ha :

Hamaker constant in J

He :

Henry coefficient in mol/(kg Pa)

IL :

Initial or Henry loading

IP :

Interaction parameter

M adsorptive :

Molar mass of the adsorptive in kg/mol

N A :

Avogadro constant

Q :

Quadrupole moment in Cm2

R :

Universal gas constant =8.3143 J/(K mol)

Rm :

Molar refraction in m3/mol

S BET :

BET surface in m2/kg

T :

Temperature in K

T ads :

Adsorption temperature in K

T b :

Normal boiling temperature in K

T c :

Critical Temperature in K

e :

Charge of an electron =1.60×10−19 C

h :

Planck’s constant =6.6256×10−34 J s

k :

Boltzmann constant =1.3804×10−23 J/K

m :

Mass in kg

m e :

Mass of an electron =9.11×10−31 kg

n :

Loading in mol/kg

n :

Refractive index

n a :

Number of atoms in the solid molecule

p :

Pressure in Pa

p ads :

Adsorption pressure at equilibrium in Pa

p c :

Critical pressure in Pa

q :

Charge in C

r :

Distance in m

s :

Number of electron bondings per solid atom

s cations :

Number of positive charged cations per solid atom

v b :

Molar volume at the normal boiling point in m3/mol

v c :

Critical volume in cm3/mol

v micro :

Micropore volume in m3/kg

v solid :

Specific volume in m3/kg

v vdW :

van der Waals volume in m3/mol

x :

Stoichiometric coefficient

x :

Reduced distance

z :

Distance in m

Φ :

Interaction potential of an adsorptive molecule with the solid continuum in J

α :

Polarisability in (C2 m2)/J

α′:

Polarisability volume in m3

β :

London constant in J m6

β :

Molar volume in m3/mol

ε :

Porosity

ε 0 :

Permittivity of free space =8.854×10−12 C/(Vm)

ε r :

Relative permittivity

φ :

Porosity

μ :

Chemical potential in J

μ :

Dipole moment in Cm (1 debye =3.34×10−30 C m)

ν 0 :

Frequency of the electron in the ground state in 1/s

ρ app :

Apparent density in kg/m3

ρ b :

Bulk density in kg/m3

ρ j,at :

Number density of atoms in 1/m3

σ :

van der Waals diameter in m

References

  • Akgün, U.: Prediction of adsorption equilibria of gases. Dissertation at the Technische Universität München (2007)

  • Braun, B.: Aggregation and agglomeration in percipitative crystallization. Dissertation at the Technische Universität München (2004)

  • Hamaker, H.C.: The London–Van der Waals attraction between spherical particles. Physica 4(10), 1058–1072 (1937)

    Article  CAS  Google Scholar 

  • Hirschfelder, J.O., Charles, C.F., Byron, B.R.: Molecular Theory of Gases and Liquids. Wiley, New York (1964)

    Google Scholar 

  • Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd edn. Academic Press, San Diego (1991)

    Google Scholar 

  • Kast, W.: Adsorption aus der Gasphase. VCH Press, Weinheim (1998)

    Google Scholar 

  • Lide, D.R.: CRC Handbook of Chemistry and Physics, 85th edn. CRC Press, London (2004–2005)

    Google Scholar 

  • Marler, B.: On the relationship between refractive index and density of SiO2-polymorphs. Phys. Chem. Miner. 16, 286–290 (1988)

    Article  CAS  Google Scholar 

  • Maurer, S.: Prediction of single-component adsorption equilibria. Dissertation at the Technische Universität München (2000)

  • Mersmann, A., Akgün, U.: Prediction of single component gas isotherms (2008, to be published)

  • Mersmann, A., Fill, B., Maurer, S.: Single and Multicomponent Adsorption Equilibria of Gases, Fortschritt-Berichte VDI, Reihe 3, Verfahrenstechnik, p. 735 (2002)

  • Mersmann, A., Kind, M., Stichlmair, J.: Thermische Verfahrenstechnik. Springer, Berlin (2005)

    Google Scholar 

  • Read, R.C., Prausnitz, J.M., Polling, B.E.: The Properties of Gases & Liquids. McGraw-Hill, Singapore (1988)

    Google Scholar 

  • Sievers, W.: Über das Gleichgewicht der Adsorption in Anlagen zur Wasserstofftrennung. Dissertation at the Technische Universität München (1993)

  • Slater, J.C., Kirkwood, J.G.: The Van-der-Waals forces in gases. Phys. Rev. 37(6), 682–697 (1931)

    Article  CAS  Google Scholar 

  • Van der Hoeven, P.C.: Electrostatic stabilization of suspensions in non-aqueous media. Dissertation at the Landbouwuniversiteit te Wageningen (1991)

  • Zundu, L., Yidong, H.: Qualitative relationship between refractive index and atomic parameters of solid materials. J. Rare Earths 22(4), 486–488 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Akgün.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akgün, U., Mersmann, A. Prediction of single component adsorption isotherms on microporous adsorbents. Adsorption 14, 323–333 (2008). https://doi.org/10.1007/s10450-007-9090-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-007-9090-9

Keywords

Navigation