Skip to main content
Erschienen in: Adsorption 2/2012

01.10.2012

Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator

verfasst von: Siew Wah Chai, Mayuresh V. Kothare, Shivaji Sircar

Erschienen in: Adsorption | Ausgabe 2/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Efficient desorption of selectively adsorbed N2 from air in a packed column of LiX zeolite by rapidly purging the adsorbent with an O2 enriched gas is an important element of a rapid cyclic pressure swing adsorption (RPSA) process used in the design of many medical oxygen concentrators (MOC). The amount of O2 purge gas used in the desorption process is a sensitive variable in determining the overall separation performance of a MOC unit. Various resistances like (a) adsorption kinetics, (b) column pressure drop, (c) non-isothermal column operation, (d) gas phase mass and thermal axial dispersions, and (e) gas-solid heat transfer kinetics determine the amount of purge gas required for efficient desorption of N2. The impacts of these variables on the purge efficiency were numerically simulated using a detailed mathematical model of non-isothermal, non-isobaric, and non-equilibrium desorption process in an adiabatic column.
The purge gas quantity required for a specific desorption duty (fraction of total N2 removed from a column) is minimum when the process is carried out under ideal, hypothetical conditions (isothermal, isobaric, and governed by local thermodynamic equilibrium). All above-listed non-idealities (a–e) can increase the purge gas quantity, thereby, lowering the efficiency of the desorption process compared to the ideal case. Items (a–c) are primarily responsible for inefficient desorption by purge, while gas phase mass and thermal axial dispersions do not affect the purge efficiency under the conditions of operation used in this study.
Smaller adsorbent particles can be used to reduce the negative effects of adsorption kinetics, especially for a fast desorption process, but increased column pressure drop adds to purge inefficiency. A particle size range of ∼300–500 μm is found to require a minimum purge gas amount for a given desorption duty. The purge gas requirement can be further reduced by employing a pancake column design (length to diameter ratio, L/D<0.2) which lowers the column pressure drop, but hydrodynamic inefficiencies (gas mal-distribution, particle agglomeration) may be introduced. Lower L/D also leads to a smaller fraction of the column volume that is free of N2 at the purge inlet end, which is required for maintaining product gas purity.
The simulated gas and solid temperature profiles inside the column at the end of the rapid desorption process show that a finite gas-solid heat transfer coefficient affects these profiles only in the purge gas entrance region of the column. The profiles in the balance of the column are nearly invariant to the values of that coefficient. Consequently, the gas-solid heat transfer resistance has a minimum influence on the overall integrated N2 desorption efficiency by O2 purge for the present application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alpay, E., Kenney, C.N., Scott, D.M.: Adsorbent particle size effects in the separation of air by rapid pressure swing adsorption. Chem. Eng. Sci. 49, 3059 (1994) CrossRef Alpay, E., Kenney, C.N., Scott, D.M.: Adsorbent particle size effects in the separation of air by rapid pressure swing adsorption. Chem. Eng. Sci. 49, 3059 (1994) CrossRef
Zurück zum Zitat Basmadjian, D., Ha, K.D., Pan, C.Y.: Nonisothermal desorption by gas purge of single solutes in fixed-bed adsorbers. I. Equilibrium theory. Ind. Eng. Chem. Process Des. Dev. 14, 328 (1975a) CrossRef Basmadjian, D., Ha, K.D., Pan, C.Y.: Nonisothermal desorption by gas purge of single solutes in fixed-bed adsorbers. I. Equilibrium theory. Ind. Eng. Chem. Process Des. Dev. 14, 328 (1975a) CrossRef
Zurück zum Zitat Basmadjian, D., Ha, K.D., Proulx, D.P.: Nonisothermal desorption by gas purge of single solutes from fixed-bed adsorbers. II. Experimental verification of equilibrium theory. Ind. Eng. Chem. Process Des. Dev. 14, 340 (1975b) CrossRef Basmadjian, D., Ha, K.D., Proulx, D.P.: Nonisothermal desorption by gas purge of single solutes from fixed-bed adsorbers. II. Experimental verification of equilibrium theory. Ind. Eng. Chem. Process Des. Dev. 14, 340 (1975b) CrossRef
Zurück zum Zitat Chai, S.W., Kothare, M.V., Sircar, S.: Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator. Ind. Eng. Chem. Res. 50, 8703 (2011) CrossRef Chai, S.W., Kothare, M.V., Sircar, S.: Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator. Ind. Eng. Chem. Res. 50, 8703 (2011) CrossRef
Zurück zum Zitat Dhingra, S.C., Gunn, D.J., Narayanan, P.V.: The analysis of heat transfer in fixed beds of particles at low and intermediate Reynolds numbers. Int. J. Heat Mass Transf. 27, 2377 (1984) CrossRef Dhingra, S.C., Gunn, D.J., Narayanan, P.V.: The analysis of heat transfer in fixed beds of particles at low and intermediate Reynolds numbers. Int. J. Heat Mass Transf. 27, 2377 (1984) CrossRef
Zurück zum Zitat Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89 (1952) Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89 (1952)
Zurück zum Zitat Griffiths, G.W., Schiesser, W.E.: Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple. Academic Press, San Diego (2011). Chap. 2 Griffiths, G.W., Schiesser, W.E.: Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple. Academic Press, San Diego (2011). Chap. 2
Zurück zum Zitat Jacob, P., Tondeur, D.: Non-Isothermal gas adsorption in fixed beds. II. Non-linear equilibrium theory and ‘Guillotine’ effect. Chem. Eng. J. 26, 41 (1983) CrossRef Jacob, P., Tondeur, D.: Non-Isothermal gas adsorption in fixed beds. II. Non-linear equilibrium theory and ‘Guillotine’ effect. Chem. Eng. J. 26, 41 (1983) CrossRef
Zurück zum Zitat Kopaygorodsky, E.M., Guliants, V.V., Krantz, W.B.: Predictive dynamic model of single-stage ultra-rapid pressure swing adsorption. AIChE J. 50, 953 (2004) CrossRef Kopaygorodsky, E.M., Guliants, V.V., Krantz, W.B.: Predictive dynamic model of single-stage ultra-rapid pressure swing adsorption. AIChE J. 50, 953 (2004) CrossRef
Zurück zum Zitat Kumar, R., Sircar, S.: Adiabatic sorption of bulk single adsorbate from an inert gas—effect of gas-solid mass and heat transfer coefficients. Chem. Eng. Commun. 26, 319 (1984a) CrossRef Kumar, R., Sircar, S.: Adiabatic sorption of bulk single adsorbate from an inert gas—effect of gas-solid mass and heat transfer coefficients. Chem. Eng. Commun. 26, 319 (1984a) CrossRef
Zurück zum Zitat Kumar, R., Sircar, S.: Adiabatic sorption of dilute single adsorbate from an inert gas—effect of gas-solid mass and heat transfer coefficients. Chem. Eng. Commun. 26, 339 (1984b) CrossRef Kumar, R., Sircar, S.: Adiabatic sorption of dilute single adsorbate from an inert gas—effect of gas-solid mass and heat transfer coefficients. Chem. Eng. Commun. 26, 339 (1984b) CrossRef
Zurück zum Zitat Kunii, D., Suzuki, M.: Particle-to-fluid heat and mass transfer in packed beds of fine particles. Int. J. Heat Mass Transf. 10, 845 (1967) CrossRef Kunii, D., Suzuki, M.: Particle-to-fluid heat and mass transfer in packed beds of fine particles. Int. J. Heat Mass Transf. 10, 845 (1967) CrossRef
Zurück zum Zitat Langer, G., Roethe, A., Roethe, K.P., Gelbin, D.: Heat and mass transfer in packed beds. III. Axial mass dispersion. Int. J. Heat Mass Transf. 21, 751–759 (1978) CrossRef Langer, G., Roethe, A., Roethe, K.P., Gelbin, D.: Heat and mass transfer in packed beds. III. Axial mass dispersion. Int. J. Heat Mass Transf. 21, 751–759 (1978) CrossRef
Zurück zum Zitat Moulijn, J.A., Van Swaaij, W.P.M.: The correlation of axial dispersion data for beds of small particles. Chem. Eng. Sci. 31, 845 (1976) CrossRef Moulijn, J.A., Van Swaaij, W.P.M.: The correlation of axial dispersion data for beds of small particles. Chem. Eng. Sci. 31, 845 (1976) CrossRef
Zurück zum Zitat Porter, K.E., Ali, Q.H., Hassan, A.O., Aryan, A.F.: Gas distribution in shallow packed beds. Ind. Eng. Chem. Res. 32, 2408 (1993) CrossRef Porter, K.E., Ali, Q.H., Hassan, A.O., Aryan, A.F.: Gas distribution in shallow packed beds. Ind. Eng. Chem. Res. 32, 2408 (1993) CrossRef
Zurück zum Zitat Rama Rao, V., Farooq, S., Krantz, W.B.: Design of a two-step pulsed pressure swing adsorption based oxygen concentrator. AIChE J. 56, 354 (2010) Rama Rao, V., Farooq, S., Krantz, W.B.: Design of a two-step pulsed pressure swing adsorption based oxygen concentrator. AIChE J. 56, 354 (2010)
Zurück zum Zitat Rege, S.U., Yang, R.T.: Limits for air separation by adsorption with LiX zeolite. Ind. Eng. Chem. Res. 36, 5358 (1997) CrossRef Rege, S.U., Yang, R.T.: Limits for air separation by adsorption with LiX zeolite. Ind. Eng. Chem. Res. 36, 5358 (1997) CrossRef
Zurück zum Zitat Rhee, H.K., Amundson, N.R.: An analysis of an adiabatic adsorption column. Part I. Theoretical development. Chem. Eng. J. 1, 241 (1970) CrossRef Rhee, H.K., Amundson, N.R.: An analysis of an adiabatic adsorption column. Part I. Theoretical development. Chem. Eng. J. 1, 241 (1970) CrossRef
Zurück zum Zitat Rhee, H.K., Heerdt, E.D., Amundson, N.R.: An analysis of an adiabatic adsorption column. Part III. Adiabatic adsorption of two solutes. Chem. Eng. J. 3, 22 (1972) CrossRef Rhee, H.K., Heerdt, E.D., Amundson, N.R.: An analysis of an adiabatic adsorption column. Part III. Adiabatic adsorption of two solutes. Chem. Eng. J. 3, 22 (1972) CrossRef
Zurück zum Zitat Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984) Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)
Zurück zum Zitat Santos, J.C., Portugal, A.F., Magalhaes, F.D., Mendes, A.: Simulation and optimization of small oxygen pressure swing adsorption units. Ind. Eng. Chem. Res. 43, 8328 (2004) CrossRef Santos, J.C., Portugal, A.F., Magalhaes, F.D., Mendes, A.: Simulation and optimization of small oxygen pressure swing adsorption units. Ind. Eng. Chem. Res. 43, 8328 (2004) CrossRef
Zurück zum Zitat Santos, J.C., Portugal, A.F., Magalhaes, F.D., Mendes, A.: Optimization of medical PSA units for oxygen production. Ind. Eng. Chem. Res. 45, 1085 (2006) CrossRef Santos, J.C., Portugal, A.F., Magalhaes, F.D., Mendes, A.: Optimization of medical PSA units for oxygen production. Ind. Eng. Chem. Res. 45, 1085 (2006) CrossRef
Zurück zum Zitat Saucez, P., Schiesser, W.E., Wouwer, A.V.: Upwinding in the method of lines. Math. Comput. Simul. 56, 171 (2001) CrossRef Saucez, P., Schiesser, W.E., Wouwer, A.V.: Upwinding in the method of lines. Math. Comput. Simul. 56, 171 (2001) CrossRef
Zurück zum Zitat Schiesser, W.E., Griffiths, G.W.: A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, Cambridge (2009) CrossRef Schiesser, W.E., Griffiths, G.W.: A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, Cambridge (2009) CrossRef
Zurück zum Zitat Schiesser, W.E.: PDE boundary conditions from minimum reduction of the PDE. Appl. Numer. Math. 20, 171 (1996) CrossRef Schiesser, W.E.: PDE boundary conditions from minimum reduction of the PDE. Appl. Numer. Math. 20, 171 (1996) CrossRef
Zurück zum Zitat Sircar, S.: Influence of gas-solid heat transfer on rapid PSA. Adsorption 11, 509 (2005) CrossRef Sircar, S.: Influence of gas-solid heat transfer on rapid PSA. Adsorption 11, 509 (2005) CrossRef
Zurück zum Zitat Sircar, S., Golden, T.C.: Isothermal and isobaric desorption of carbon dioxide by purge. Ind. Eng. Chem. Res. 34, 2881 (1995) CrossRef Sircar, S., Golden, T.C.: Isothermal and isobaric desorption of carbon dioxide by purge. Ind. Eng. Chem. Res. 34, 2881 (1995) CrossRef
Zurück zum Zitat Sircar, S., Kumar, R.: Equilibrium theory for adiabatic desorption of bulk binary gas mixtures by purge. Ind. Eng. Chem. Process Des. Dev. 24, 358 (1985) CrossRef Sircar, S., Kumar, R.: Equilibrium theory for adiabatic desorption of bulk binary gas mixtures by purge. Ind. Eng. Chem. Process Des. Dev. 24, 358 (1985) CrossRef
Zurück zum Zitat Sircar, S., Myers, A.L.: Gas separation by zeolites. In: Auerbach, S.M., Carrado, K.A., Dutta, P.K. (eds.) Handbook of Zeolite Science and Technology, pp. 1063–1105. Dekker, New York (2003). Chap. 22 Sircar, S., Myers, A.L.: Gas separation by zeolites. In: Auerbach, S.M., Carrado, K.A., Dutta, P.K. (eds.) Handbook of Zeolite Science and Technology, pp. 1063–1105. Dekker, New York (2003). Chap. 22
Zurück zum Zitat Sircar, S., Rao, M.B., Golden, T.C.: Fractionation of air by zeolites. In: Dabrowski, A. (ed.) Adsorption and Its Applications in Industry and Environmental Protection, vol. 120, Part 1, pp. 395–423. Elsevier, New York (1999) CrossRef Sircar, S., Rao, M.B., Golden, T.C.: Fractionation of air by zeolites. In: Dabrowski, A. (ed.) Adsorption and Its Applications in Industry and Environmental Protection, vol. 120, Part 1, pp. 395–423. Elsevier, New York (1999) CrossRef
Zurück zum Zitat Skarstrom, C.W.: Method and apparatus for fractionating gaseous mixtures by adsorption. U.S. patent 2,944,627 (1960) Skarstrom, C.W.: Method and apparatus for fractionating gaseous mixtures by adsorption. U.S. patent 2,944,627 (1960)
Zurück zum Zitat Todd, R.S., Webley, P.A.: Mass-transfer models for rapid pressure swing adsorption simulation. AIChE J. 52, 3126 (2006) CrossRef Todd, R.S., Webley, P.A.: Mass-transfer models for rapid pressure swing adsorption simulation. AIChE J. 52, 3126 (2006) CrossRef
Zurück zum Zitat Wakao, N., Kaguei, S., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds. Chem. Eng. Sci. 34, 325 (1979) CrossRef Wakao, N., Kaguei, S., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds. Chem. Eng. Sci. 34, 325 (1979) CrossRef
Zurück zum Zitat Wicke, E.: Empirische and teoretische Untersuchungen der Sorptionsgeschwindigkeit von Gasen an porösen Stoffen I. Kolloid Z. 86, 167 (1939a) CrossRef Wicke, E.: Empirische and teoretische Untersuchungen der Sorptionsgeschwindigkeit von Gasen an porösen Stoffen I. Kolloid Z. 86, 167 (1939a) CrossRef
Zurück zum Zitat Wicke, E.: Empirische and teoretische Untersuchungen der Sorptionsgeschwindigkeit von Gasen an porösen Stoffen II. Kolloid Z. 86, 295 (1939b) CrossRef Wicke, E.: Empirische and teoretische Untersuchungen der Sorptionsgeschwindigkeit von Gasen an porösen Stoffen II. Kolloid Z. 86, 295 (1939b) CrossRef
Zurück zum Zitat Zhong, G.M., Rankin, P.J., Ackley, M.W.: High frequency PSA process for gas separation. U.S. patent 7,828,878 (2010) Zhong, G.M., Rankin, P.J., Ackley, M.W.: High frequency PSA process for gas separation. U.S. patent 7,828,878 (2010)
Metadaten
Titel
Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator
verfasst von
Siew Wah Chai
Mayuresh V. Kothare
Shivaji Sircar
Publikationsdatum
01.10.2012
Verlag
Springer US
Erschienen in
Adsorption / Ausgabe 2/2012
Print ISSN: 0929-5607
Elektronische ISSN: 1572-8757
DOI
https://doi.org/10.1007/s10450-012-9384-4

Weitere Artikel der Ausgabe 2/2012

Adsorption 2/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.