Skip to main content
Log in

Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen is proposed to improve the performance of miniature oxygen concentrator based rapid pressure swing adsorption technology. The effects of intermediate gas pressurization and desorption pressure on the performance of the process are evaluated by experiments and simulations. Results showed that pressurization with intermediate gas from product end can effectively improve the oxygen purity of the product. The pressure and oxygen purity of intermediate gas before pressurization were key parameters that affected the oxygen purity of the product. When the adsorption pressure was 240 kPa and the desorption pressure was 60 kPa, the test unit for the process produced 0.75 L min−1 of ~90% O2 with 29.45% of oxygen recovery from compressed air. The minimum bed size factor (BSF) for ~90% O2 product was 82.84 kg TPD−1. The BSF could be effectively reduced by lowering the desorption pressure. Moreover, oxygen recovery could be improved by lowering the desorption pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

b i :

Langmuir parameter (kPa−1)

b 0 i :

Langmuir parameter (kPa−1)

c :

Molar concentration (mol m−3)

c i :

Component i molar concentration (mol m−3)

C f :

Gas heat capacity (J kg−1 K−1)

C s :

Solid heat capacity (J kg−1 K−1)

d p :

Particle diameter (m)

d in :

Column diameter (m)

D ax :

Axial dispersion coefficient (m2 s−1)

D e :

Effective lumped diffusivity (m2 s−1)

D m :

Molecular diffusion coefficient (m2 s−1)

D K :

Knudsen diffusivity (m2 s−1)

l :

Nitrogen adsorbents loading height (m)

L :

Column height (m)

Nu :

Nusselt number

h f :

Gas–solid heat transfer coefficient (W m−2 K−1)

h w :

Internal gas-wall convective heat transfer coefficient (W m−2 K−1)

k i :

LDF mass transfer coefficient for adsorbate i (s−1)

K f :

Gas thermal dispersion coefficient (W m−1 K−1)

K s :

Solid phase thermal conductivity (W m−1 K−1)

P :

Pressure (kPa)

P i :

Gas partial pressure (kPa)

P H :

Adsorption pressure (kPa)

P L :

Desorption pressure (kPa)

P RE :

Pressure at end of RE step (kPa)

P IPP :

Pressure at end of IPP step (kPa)

Pe :

Limiting Peclet number

Pr(=μC f/K f):

Prandtl number

q 0 /c 0 :

Dimensionless Henry’s law constant

q i :

Adsorbed concentration of the component i (mol kg−1)

q i * :

Equilibrium adsorption concentration of the component i (mol kg−1)

q s :

Saturation adsorbed concentration (mol kg−1)

R :

Gas constant (J mol−1 K−1)

Re(=d p ρ f u/μ):

Reynolds number

S 12 :

Adsorbent selectivity

t :

Time (s)

t C :

Cycle time (s)

T :

Temperature (K)

T f :

Gas temperature (K)

T F :

Feed temperature (K)

T RE :

Intermediate gas temperature (K)

T s :

Solid temperature (K)

T w :

Wall temperature (K)

u :

Interstitial gas velocity (m s−1)

u in :

Feed velocity (m s−1)

y :

Oxygen purity of gas

y F :

Oxygen purity of feed gas

y RE :

Oxygen purity of intermediate gas

z :

Axial position (m)

μ :

Dynamic viscosity (Pa s)

ρ f :

Gas density (kg m−3)

ρ p :

Apparent density (kg m−3)

ρ b :

Bulk density (kg m−3)

ε b :

Inter-particle porosity

ε p :

Particle porosity

ε t :

Total bed porosity

γ 1 :

Axial tortuosity factor

τ p :

Pore tortuosity

ΔH i :

Heat of adsorption (J mol−1)

References

  • Alpay, E., Kenney, C.N., Scott, D.M.: Adsorbent particle size effects in the separation of air by rapid pressure swing adsorption. Chem. Eng. Sci. 49, 3059–3075 (1994)

    Article  CAS  Google Scholar 

  • Chai, S.W., Kothare, M.V., Sircar, S.: Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator. Ind. Eng. Chem. Res. 50, 8703–8710 (2011)

    Article  CAS  Google Scholar 

  • Chai, S.W., Kothare, M.V., Sircar, S.: Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator. Adsorption 18, 87–102 (2012)

    Article  CAS  Google Scholar 

  • Chai, S.W., Kothare, M.V., Sircar, S.: Efficiency of nitrogen desorption from LiX zeolite by rapid oxygen purge in a pancake adsorber. AIChE J 59, 365–368 (2013)

    Article  CAS  Google Scholar 

  • Drevitson, K.C., Carella, P.F., Carella, R.L., Clemente, M.A., Johnson, R.D.: Integrated shop vacuum and air compressor system. U.S. Patent, 119,016 (2007)

  • Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952)

    CAS  Google Scholar 

  • Hu, Z.M, Chen, S.H., Xu, Y.D., Yang, S.J., Chen, R.: Direct attach explosion proof oil-free scroll vacuum compressor. C.N. Patent, 101,509,489 (2009)

  • Huang, W.C., Chou, C.T.: Comparison of radial and axial flow rapid pressure swing adsorption processes. Ind. Eng. Chem. Res. 42, 1998–2006 (2003)

    Article  CAS  Google Scholar 

  • Langer, G., Roethe, A., Roethe, K.P., Gelbin, D.: Heat and mass-transfer in packed-beds. 3. Axial mass dispersion. Int. J. Heat Mass Transf 21, 751–759 (1978)

    Article  CAS  Google Scholar 

  • Leavitt, F.W.: Improved air separation pressure swing adsorption process. E.P. Patent, 461,478 (1991)

  • Liu, Y.S., Zheng, X.G., Dai, R.F.: Numerical study of flow mal-distribution and depressurization strategies in a small-scale axial adsorber. Adsorption 20, 757–768 (2014)

    Article  CAS  Google Scholar 

  • Lopes, F.V.S., Grande, C.A., Rodrigues, A.E.: Activated carbon for hydrogen purification by pressure swing adsorption: multicomponent break through curves and PSA performance. Chem. Eng. Sci. 66, 303–317 (2011)

    Article  CAS  Google Scholar 

  • Lopes, F.V.S., Grande, C.A., Rodrigues, A.E.: Fast-cycling VPSA for hydrogen purification. Fuel 93, 510–523 (2012)

    Article  CAS  Google Scholar 

  • Rama Rao, V., Farooq, S.: Experimental study of a pulsed pressure swing adsorption process with very small 5A zeolite particles for oxygen enrichment. Ind. Eng. Chem. Res. 53, 13157–13170 (2014)

    Article  Google Scholar 

  • Rama Rao, V., Farooq, S., Krantz, W.B.: Design of a two-step pulsed pressure swing adsorption based oxygen concentrator. AIChE J 56, 354–370 (2010)

    Google Scholar 

  • Rama Rao, V., Kothare, M.V., Sircar, S.: Numerical simulation of rapid pressurization and depressurization of a zeolite column using nitrogen. Adsorption 20, 53–60 (2014a)

    Article  Google Scholar 

  • Rama Rao, V., Chai, S.W., Kothare, M.V., Sircar, S.: Highlights of non-equilibrium, non-isobaric, non-isothermal desorption of nitrogen from a LiX zeolite column by rapid pressure reduction and rapid purge by oxygen. Adsorption 20, 477–481 (2014b)

    Article  CAS  Google Scholar 

  • Rama Rao, V., Kothare, M.V., Sircar, S.: Novel design and performance of a medical oxygen concentrator using a rapid pressure swing adsorption concept. AIChE J. 60, 3330–3335 (2014c)

    Article  Google Scholar 

  • Rama Rao, V., Kothare, M.V., Sircar, S.: Anatomy of a rapid pressure swing adsorption process performance. AIChE J 61, 2008–2015 (2015a)

    Article  Google Scholar 

  • Rama Rao, V., Wu, C.W., Kothare, M.V., Sircar, S.: Comparative performances of two commercial samples of LiLSX zeolite for production of 90% oxygen from air by a novel rapid pressure swing adsorption system. Sep. Sci. Technol. 50, 1447–1452 (2015b)

    Article  CAS  Google Scholar 

  • Rama Rao, V., Kothare, M.V., Sircar, S.: Performance of a medical oxygen concentrator using rapid pressure swing adsorption process: effect of feed air pressure. AIChE J. 62, 1212–1215 (2015c)

    Google Scholar 

  • Rege, S.U., Yang, R.T.: Limits for air separation by adsorption with LiX Zeolite. Ind. Eng. Chem. Res. 36, 5358–5365 (1997)

    Article  CAS  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Ruthven, D.M., Farooq, S., Knaebel, K.S.: Pressure Swing Adsorption. VCH, New York (1994)

    Google Scholar 

  • Shen, G.H., Xie, K.N., Yan, Y.L., Jing, D., Tang, C., Wu, X.M., Liu, J., Sun, T., Zhang, J.B., Luo, E.P.: The role of oxygen-increased respirator in humans ascending to high altitude. Biomed. Eng. Online. 11, 49–56 (2012)

    Article  Google Scholar 

  • Shen, G.H., Wu, X.M., Tang, C., Yan, Y.L., Liu, J., Guo, W., Jing, D., Lei, T., Tian, Y., Xie, K.M., Luo, E.P., Zhang, J.B.: An oxygen enrichment device for lowlanders ascending to high altitude. Biomed. Eng. Online. 12, 100–108 (2013)

    Article  Google Scholar 

  • Sircar, S.: Gibbsian surface excess for gas adsorption-revisited. Ind. Eng. Chem. Res. 38, 3670–3682 (1999)

    Article  CAS  Google Scholar 

  • Sircar, S., Hanley, B.F.: Production of oxygen enriched air by rapid pressure swing adsorption. Adsorption 1, 313–320 (1995)

    Article  CAS  Google Scholar 

  • Wakao, N., Kaguei, S., Funazkri, T.: Effect of fluid dispersion coefficients on particle to fluid heat transfer coefficients in packed beds. Chem. Eng. Sci. 34, 325–336 (1979)

    Article  CAS  Google Scholar 

  • Windsor, J.S., Rodway, G.W.: Supplemental oxygen and sleep at altitude. High Alt. Med. Biol. 7, 307–311 (2006)

    Article  Google Scholar 

  • Wu, C.W., Kothare, M.V., Sircar, S.: Model analysis of equilibrium adsorption isotherms of pure N2, O2, and their binary mixtures on LiLSX zeolite. Ind. Eng. Chem. Res. 53, 12428–12434 (2014a)

    Article  CAS  Google Scholar 

  • Wu, C.W., Kothare, M.V., Sircar, S.: Equilibrium adsorption isotherms of pure N2 and O2 and their binary mixtures on LiLSX zeolite: experimental data and thermodynamic analysis. Ind. Eng. Chem. Res. 53, 7195–7201 (2014b)

    Article  CAS  Google Scholar 

  • Wu, C.W., Rama Rao, V., Kothare, M.V., et al.: Experimental study of a novel rapid pressure-swing adsorption based medical oxygen concentrator: effect of the adsorbent selectivity of N2 over O2. Ind. Eng. Chem. Res. 55, 4676–4681 (2016)

    Article  CAS  Google Scholar 

  • Yang, R.T.: Adsorbents: Fundamentals and Applications. Wiley, New York (2003)

    Book  Google Scholar 

  • Young, D.M., Crowell, A.D.: Physical Adsorption of Gases. Butterworths, London (1962)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (51306017) and Key Technology and Industrialization Project of Emergency Rescue Breathing Equipment (Z141100000714007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingshu Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Liu, Y., Yang, X. et al. Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen. Adsorption 23, 175–184 (2017). https://doi.org/10.1007/s10450-016-9843-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9843-4

Keywords

Navigation