Skip to main content

Advertisement

Log in

Setting Fish Quotas Based on Holistic Ecosystem Modelling Including Environmental Factors and Foodweb Interactions – A New Approach

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

We present a new approach to set fish quotas from holistic aquatic foodweb modelling (the LakeWeb-approach). This modelling includes changes in environmental conditions (nutrients, salinity, temperature, oxygen), process-based mass-balance calculations of nutrient concentrations from inflow, internal processes and outflow, calculations of how changes in nutrient concentrations affect primary production, how such changes influence secondary production and how this influence fish production and biomass. This approach gives dynamic, quantitative responses to alterations in driving variables and abiotic/biotic feedbacks. We have applied this approach for preliminary simulations of the cod biomass in the Baltic. We also show that this approach adds a new dimension in setting fish quotas, which in the future could complement, rather than compete with, the more established methods used today based on fish catch statistics and models based on other presuppositions. Our preliminary results indicate that under present environmental conditions (2003), the cod is likely to be extinct if the annual catch is between 95 and 100 kt. The present fish quota is 75 kt/yr in the Baltic, but the overfishing may be 35 kt/yr. We discuss cause–effect relationships regulating fish production, key factors influencing thresholds and points of no return connected to overfishing and changes in environmental conditions, factors regulating recovery and methods for setting optimal fish quotas using this modelling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aertbjerg G. 2001. Eutrophication in Europe’s Coastal Waters. European Environment Agency, Topic report 7/2002, Copenhagen, 86 pp.

  • Ambio 1990. Special Issue: Marine Eutrophication, Vol. 19, pp. 101–176.

  • Ambio 2000. Eutrophication and contaminants in the aquatic environment. Nr. 4–5, pp. 183–290.

  • Anonymous 2002. Report of the Workshop Course on Fish Assessment Techniques. ICES CM 2002/D:02.

  • V.V. Boulion L. Håkanson (2003) ArticleTitleA new general model to predict biomass and production of bacterioplankton in lakes Ecol. Model. 160 91–114 Occurrence Handle10.1016/S0304-3800(02)00326-5

    Article  Google Scholar 

  • J.E. Brittain Å. Brabrand (2001) Fish Movement in Rivers, Lakes and Estuaries in Relation to Contamination by Radionuclides Freshwater Ecology & Inland Fisheries Laboratory (LFI), Natural History Museums University of OsloNorway

    Google Scholar 

  • W.-D.N. Busch P.G. Sly (1992) The Development of an Aquatic Habitat Classification System for Lakes CRC Press Boca Raton, Florida

    Google Scholar 

  • V. Christensen C.J. Walters D. Pauly (2000) Ecopath with Ecosim: A User’s Guide Fisheries Centre Univ. of British ColumbiaVancouver 130

    Google Scholar 

  • A. Corten (1996) ArticleTitleThe widening gap between fisheries biology and fisheries management in the European Union Fish. Res. 27 1–15 Occurrence Handle10.1016/0165-7836(95)00458-0

    Article  Google Scholar 

  • R. Elmgren (1984) ArticleTitleTrophic dynamics in the enclosedbrackish Baltic Sea Rapports et Procés-Verbeaux des Réunions du Conseil International pour lȁ9Exploration de la Mer 183 152–169

    Google Scholar 

  • InstitutionalAuthorNameFAO (2000) The State of the World Fisheries and Aquaculture 2000 Food and Agriculture Organisation Fisheries departmentRome

    Google Scholar 

  • FAO 2001. FAO Yearbook. Fishery Statistics, Vol. 92/1. Capture production 2001.

  • L. Håkanson (1999) Water Pollution –Methods and Criteria to Rank, Model and Remediate Chemical Threats to Aquatic Ecosystems Backhuys Publishers Leiden 299

    Google Scholar 

  • L. Håkanson (2000) Modelling Radiocesium in Lakes and Coastal Areas – New Approaches for Ecosystem Modellers. A Textbook with Internet Support Kluwer Academic Publishers Dordrecht 215

    Google Scholar 

  • Håkanson L. 2002a The Baltic – present status, what it should be and how to get there http://www.sedimentology.geo.uu. se/BALTWEB_OH.pdf.

  • L. Håkanson (2002) ArticleTitleLumbering operations, lake humification and consequences for the structure of the lake foodweb: a case study using the LakeWeb-model for Lake Stora Kröntjärn, Sweden Aquat. Sci. 64 185–197 Occurrence Handle10.1007/s00027-002-8066-9

    Article  Google Scholar 

  • L. Håkanson (2003a) Propagation and analysis of uncertainty in ecosystem models C.D. Canham J.J. Cole W.K. Lauenroth (Eds) Models in Ecosystem Science Princeton Univ. Press Princeton U.S.A 139–167

    Google Scholar 

  • L. Håkanson (2003b) ArticleTitleConsequences and correctives related to acidification, liming and mercury in lake fish – a case study for Lake Huljesjön, Sweden, using the LakeWeb-model Environ. Model. Assess. 8 275–283 Occurrence Handle10.1023/B:ENMO.0000004581.41692.af

    Article  Google Scholar 

  • L. Håkanson V.V. Boulion (2001a) ArticleTitleRegularities in primary production, Secchi depth and fish yield and a new system to define trophic and humic state indices for aquatic ecosystems Internat. Rev. Hydrobiol. 86 23–62 Occurrence Handle10.1002/1522-2632(200101)86:1<23::AID-IROH23>3.3.CO;2-W

    Article  Google Scholar 

  • L. Håkanson V.V. Boulion (2001b) ArticleTitleA practical approach to predict the duration of the growing season for European lakes Ecol. Model. 140 235–245 Occurrence Handle10.1016/S0304-3800(01)00319-2

    Article  Google Scholar 

  • L. Håkanson V.V. Boulion (2002a) The Lake Foodweb – Modelling Predation and Abiotic/Biotic Interactions Backhuys Publishers Leiden 344

    Google Scholar 

  • L. Håkanson V.V. Boulion (2002b) ArticleTitleEmpirical and dynamical models to predict the coverbiomass and production of macrophytes in lakes Ecol. Model. 151 213–243 Occurrence Handle10.1016/S0304-3800(01)00458-6

    Article  Google Scholar 

  • L. Håkanson V.V. Boulion (2003a) ArticleTitleModelling production and biomasses of herbivorous and predatory zooplankton in lakes Ecol. Model. 161 1–33 Occurrence Handle10.1016/S0304-3800(02)00210-7

    Article  Google Scholar 

  • L. Håkanson V.V. Boulion (2003b) ArticleTitleA model to predict how individual factors influence Secchi depth variations among and within lakes Internat. Rev. Hydrobiol. 88 212–232 Occurrence Handle10.1002/iroh.200390016

    Article  Google Scholar 

  • L. Håkanson V.V. Boulion (2003c) ArticleTitleA general dynamic model to predict biomass and production of phytoplankton in lakes Ecol. Model. 165 285–301 Occurrence Handle10.1016/S0304-3800(03)00096-6

    Article  Google Scholar 

  • L. Håkanson V.V. Boulion (2003d) ArticleTitleModelling production and biomasses of zoobenthos in lakes Aqua. Ecol. 37 277–306 Occurrence Handle10.1023/A:1025854406257

    Article  Google Scholar 

  • L. Håkanson V. Boulion (2004a) ArticleTitleModelling production and biomasses of prey and predatory fish in lakes Hydrobiologia 511 125–150 Occurrence Handle10.1023/B:HYDR.0000014036.93661.8e

    Article  Google Scholar 

  • L. Håkanson V. Boulion (2004b) ArticleTitleEmpirical and dynamical models of production and biomasses of benthic algae in lakes Hydrobiologia 522 75–97 Occurrence Handle10.1023/B:HYDR.0000029967.54638.df

    Article  Google Scholar 

  • L. Håkanson V.V. Boulion A. Ostapenia (2003a) ArticleTitleThe influence of biomanipulations (fish removal) on the structure of lake foodwebs, case studies using the LakeWeb-model Aqua. Ecol. 37 87–99 Occurrence Handle10.1023/A:1022181302864

    Article  Google Scholar 

  • Håkanson L. and Eckhéll J. 2005. Suspended particulate matter (SPM) in the Baltic – empirical data and models. Ecol. Model. (in press).

  • L. Håkanson A. Gyllenhammar M. och Karlsson (2002a) Östersjön – hur läget ärhur det borde vara och hur man kommer dit! (The Baltic – present status, what it should be and how to get there) Geotryckeriet Uppsala

    Google Scholar 

  • Håkanson L., Karlsson M. 2004. A dynamic model to predict phosphorus fluxes, concentrations and eutrophication effects in Baltic coastal areas. In: Karlsson M. (ed.), Predictive Modelling – A Tool for Aquatic Environmental Management Thesis Dept. of Earth Sci., Uppsala Univ. 108 pp.

  • L. Håkanson A. Ostapenia V.V. Boulion (2003b) ArticleTitleA mass-balance model for phosphorus accounting for biouptake and retention in biota Freshw. Biol. 48 928–950 Occurrence Handle10.1046/j.1365-2427.2003.01057.x

    Article  Google Scholar 

  • L. Håkanson A. Ostapenia A. Parparov K.D. Hambright V.V. Boulion (2003c) ArticleTitleManagement criteria for lake ecosystems applied to case studies of changes in nutrient loading and climate change Lakes Reserv. Res. Manage. 8 141–155 Occurrence Handle10.1046/j.1320-5331.2003.00216.x

    Article  Google Scholar 

  • L. Håkanson R.H. Peters (1995) Predictive Limnology Methods for Predictive Modelling SPB Academic Publishing Amsterdam 464

    Google Scholar 

  • F.R. Harden-Jones (1968) Fish Migration Edward Arnold Publishers London U.K 325

    Google Scholar 

  • C.J. Harvey S.P. Cox T.E. Essington S. Hansson J.F. Kitchell (2003) ArticleTitleAn ecosystem model of food web and fisheries interactions in the Baltic Sea ICES J. Mar Sci. 60 939–950 Occurrence Handle10.1016/S1054-3139(03)00098-5

    Article  Google Scholar 

  • O. Hjerne S. Hansson (2002) ArticleTitleThe role of fish and fisheries in Baltic Sea nutrient dynamics Limnol. Oceanogr. 47 IssueID4 1023–1032

    Google Scholar 

  • J. Hutchings (1996) ArticleTitleSpatial and temporal variations in the density of northern cod and a review of hypotheses for the stock’s collapse Can. J. Fish. Aquat. Sci. 53 943–962 Occurrence Handle10.1139/cjfas-53-5-943

    Article  Google Scholar 

  • IBSFC 2003. Total Allowable Catches (TACs) established by the IBSFC for the respective years in thousand tonnes Available at: http://www.ibsfc.org.

  • ICES Fisheries Statistics 1973-2000. Nominal Catch Statistics, STATLANT Programme. ICES, Copenhagen, Denmark 2002 (http://www.ices.dk/fish/statlant.asp).

  • Jonsson P. 1992. Large-scale changes of contaminants in Baltic Sea sediments during the twentieth century. Thesis, Uppsala Univ, Sweden.

  • Jonsson P., Persson J. and Holmberg P. 2003. Skärgårdens bottnar (The bottom areas of the archipelago). Swedish EPAReport 5212, 112 pp. .

  • Karagiannikos A. 1996. Total Allowable Catch (TAC) and quota management system in the European Union.

  • P.M. Mace (2001) ArticleTitleA new role for MSY in single-species and ecosystem approaches to fisheries stock assessment and management Fish Fisheries 2 2–32 Occurrence Handle10.1046/j.1467-2979.2001.00033.x

    Article  Google Scholar 

  • MARE-project see http://www.mare.su.se.

  • R.M. McDowall (1988) Diadromy in Fishes Timber Press PortlandOregon, USA 308

    Google Scholar 

  • Menshutkin V.V. 1971. Mathematical modelling of populations and communities of aquatic animals. Leningrad (in Russian).

  • L. Monte (1995) ArticleTitleA simple formula to predict approximate initial contamination of lake water following a pulse deposition of radionuclide Health Phys. 68 IssueID3 288–294

    Google Scholar 

  • L. Monte (1996) ArticleTitleCollective models in environmental science Sci. Tot. Environ. 192 41–47 Occurrence Handle10.1016/0048-9697(96)05290-4

    Article  Google Scholar 

  • Monte L. Brittian J.E., Håkanson L. and Gallego E. 1999. MOIRA Models and Methodologies for Assessing the Effectiveness of Countermeasures in Complex Aquatic Systems Contaminated by Radionuclides. ENEART/AMP, 150 pp.

  • Nordvarg L. 2001. Predictive model and eutrophication effects of fish farms. Dr-thesis, Uppsala Univ.

  • T.G. Northcote (1978) Migratory strategies and production in freshwater fishes S.D. Gerking (Eds) Ecology of Freshwater Fish Production Blackwell Scientific Publications OxfordUK 326–359

    Google Scholar 

  • E. Odum (1986) Ecology (Moscow in Russian)

    Google Scholar 

  • InstitutionalAuthorNameOECD (1982) Eutrophication of Waters Monitoring, Assessment and Control OECD Paris 154

    Google Scholar 

  • A. Omstedt (2004) ArticleTitleÖstersjön idag – många gåtor återstår Havsutssikt 2 6–7

    Google Scholar 

  • R.H. Peters (1986) ArticleTitleThe role of prediction in limnology Limnol. Oceanogr. 31 1143–1159

    Google Scholar 

  • R.H. Peters (1991) A Critique for Ecology Cambridge Univ. Press Cambridge 366

    Google Scholar 

  • J. Sandberg R. Elmgren F. Wulff (2000) ArticleTitleCarbon flows in Baltic Sea food webs – a re-evaluation using a mass balance approach J. Mar. Systems 25 249–260 Occurrence Handle10.1016/S0924-7963(00)00019-1

    Article  Google Scholar 

  • K. Söderberg A. och Gårdmark (2003) ArticleTitleKustfisk och fiske Bottniska Viken 2003 19–21

    Google Scholar 

  • P. Stålnacke A. Grimvall K. Sundblad A. Tonderski (1999) ArticleTitleEstimation of riverine loads of nitrogen and phosphorus to the Baltic Sea1970–1993 Environ. Monit. Assess. 58 173–200 Occurrence Handle10.1023/A:1006073015871

    Article  Google Scholar 

  • A. Voipio (Eds) (1981) The Baltic Sea Elsevier Oceanographic Series Amsterdam 418

    Google Scholar 

  • Vollenweider R.A. 1968. The scientific basis of lake eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. Tech. Rep. DAS/DSI/68.27, OECD, Paris, 159 pp.

  • Vorobev G.A. 1977. Landscape Types of Lake Overgrowing Natural Conditions and Resources of North European Part of the Soviet Union. Vologda, pp. 48–60 (in Russian).

  • M. Wallin L. Håkanson J. Persson (1992) Load Models for Nutrients in Coastal Areas, Especially from Fish Farms (in Swedish with English summary) Nordiska ministerrådet 1992:502 Copenhagen 207

    Google Scholar 

  • C.J. Walters V. Christersen D. Pauly (1997) ArticleTitleStructuring dynamic models of exploited ecosystems from trophic mass-balance assessments Rev. Fish Biol. Fisheries 7 139–172 Occurrence Handle10.1023/A:1018479526149

    Article  Google Scholar 

  • C.J. Walters V. Christersen D. Pauly J.F. Kitchell (2000) ArticleTitleRepresenting density dependent consequences of life history strategies in aquatic ecosystems: Ecosim II Ecosystems 3 70–83 Occurrence Handle10.1007/s100210000011

    Article  Google Scholar 

  • Winberg G.G. 1985. Main Features of Production Process in the Naroch lakes Ecological System of Naroch Lakes. Minsk, pp. 269–284 (in Russian).

  • R.J. Wotton (1990) Ecology of Teleost Fishes Chapman and Hall New York, USA 404

    Google Scholar 

  • F. Wulff L. Rahm P. Larsson (Eds) (2001) A Systems Analysis of the Baltic Sea Springer-Verlag Berlin, Ecological studies 455

    Google Scholar 

  • Yu. Zaitsev V. Mamaev (1997) Marine Biological Diversity in the Black Sea. A study of change and decline United Nations Publications New York 208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Håkanson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Håkanson, L., Gyllenhammar, A. Setting Fish Quotas Based on Holistic Ecosystem Modelling Including Environmental Factors and Foodweb Interactions – A New Approach. Aquat Ecol 39, 325–351 (2005). https://doi.org/10.1007/s10452-005-3418-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-005-3418-x

Keywords

Navigation