Skip to main content
Log in

Biodeterioration of ancient stone materials from the Persepolis monuments (Iran)

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The problem of deterioration of art works is particularly relevant in countries like Iran that are rich in cultural heritage. According to UNESCO data, Iran holds the tenth rank in a list of countries possessing the highest number of monuments belonging to the world cultural heritage. Archaeological areas, buildings, mosques, statues, museums and objects are all exposed to different biogenic and abiogenic stresses under generally aggressive climatic conditions. Lichens and fungi are known to actively decompose stone surfaces. This process is both physical and chemical in nature and often reaches deep below the stone surfaces. This is caused by chemical and physical interactions of the microbiota with the fluctuating and often drastically changing environmental conditions. Here, we describe and analyze the mainly physical degradation by invading fungal hyphae between stone crystals and a generally destabilizing stone texture. In addition to physical deterioration, organic acids produced by lichens enhance the chemical decomposing processes. In this work, penetration of hyphal bundles as well as individual fungi was studied, and the biodeteriorating patterns were documented and compared to general physical–chemical weathering phenomena. Several strains of aggressive black yeast-like fungi and bacteria were isolated and cultivated and will be described in a taxonomical context with many other isolates from different localities using physiological, morphological and molecular data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–2
Figs. 3–6
Figs. 7–10

Similar content being viewed by others

References

  • Adamo, P., & Violante P. (2000). Weathering of rocks and neogenesis of minerals associated with lichen activity. Applied Clay Science, 16(5–6), 229–256.

    Article  CAS  Google Scholar 

  • Aghamiri, R., & Schwartzman D. W. (2002). Weathering rates of bedrock by lichens: A mini watershed study. Chemical Geology, 188(3–4), 249–259.

    Article  CAS  Google Scholar 

  • Bjelland, T., Saebo, L., & Thorseth, I. H. (2002). The occurrence of biomineralization products in four lichen species growing on sandstone in western Norway. Lichenologist, 34, 429–440.

    Article  Google Scholar 

  • Brady, P. V., Dorn, R. I., Brazel, A. J., Clark, J., Moore, R. B., & Glidewell, T. (1999). Direct measurement of the combined effects of lichen, rainfall, and temperature on silicate weathering. Geochimica Et Cosmochimica Acta, 63(19–20), 3293–3300.

    Article  CAS  Google Scholar 

  • Brock, T., & Madigan, M. (1997). Biology of microorganisms (8th ed.). New Jersey: Prentice-Hall

  • Bungartz, F., Garvie, L. A. J., & Nash, T. H. (2004). Anatomy of the endolithic Sonoran Desert lichen Verrucaria rubrocincta Breuss: Implications for biodeterioration and biomineralization. Lichenologist, 36, 55–73.

    Article  Google Scholar 

  • Caneva, G., Gori, E., & Montefinale T. (1995). Biodeterioration of monuments in relation to climatic changes in Rome between 19 and 20th centuries. Science of the Total Environment, 167, 205–214.

    Article  CAS  Google Scholar 

  • Friedmann, E. I. (1980). Endolithic microbial life in hot and cold deserts. Origins of Life and Evolution of the Biosphere, 10(3), 223–235.

    Article  CAS  Google Scholar 

  • Golubic, S., Brent, G., & Lecampio, T. (1970). Scanning electron microscopy of endolithic algae and fungi using a multipurpose casting-embedding technique. Lethaia, 3(2), 203–209.

    Article  Google Scholar 

  • Gorbushina A. A., Krumbein W. E., & Palinska, K. A. (1999). The phototrophic prokaryotes (pp. 657–664). New York: Kluwer Academic/Plenium.

    Google Scholar 

  • Jones, D., & Wilson, M. J. (1985). Chemical activity of lichens on mineral surfaces – a review. International Biodeterioration, 21(2), 99–104.

    CAS  Google Scholar 

  • Kondratyeva, I. A., Gorbushina, A. A., & Boikova, A. I. (2006). Biodeterioration of construction materials. Glass Physics and Chemistry, 32(2), 254–256.

    Article  CAS  Google Scholar 

  • Krumbein, W. E. (1969). Über den Einfluß der Mikroflora auf die exogene Dynamik (Verwitterung und Krustenbildung). Geologische Rundschau, 58, 333–363

    Google Scholar 

  • Krumbein, W. E., & Schönborn-Krumbein, C. E. (1987). Biogene Bauschaden Anamnese, diagnose und Terapie in Bautenshutz und Denkmalpflege. Bautenschutz/Bausanierung, 10, 14–23.

    Google Scholar 

  • Krumbein, W. E., & Urzi, C. (1991). Biologically induced decay phenomena of antique marbles-some general considerations. The conservation of monuments in the Mediterranean Basin (pp. 219–235).

  • Lee, M. R., & Parsons, I. (1999). Biomechanical and biochemical weathering of lichen-encrusted granite: Textural controls on organic–mineral interactions and deposition of silica-rich layers. Chemical Geology, 161(4), 385–397.

    Article  CAS  Google Scholar 

  • Nimis, P. L., & Monte, M. (1988). Lichens and monument. Studia Geobotanica, 8, 1–133.

    Google Scholar 

  • Schneider, J. (1976). Biological and inorganic factors in the destruction of limestone coasts. Contributions to Sedimentology, 6, 1–112.

    Google Scholar 

  • Spurr, A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26(1–2), 31–43.

    Article  CAS  Google Scholar 

  • Sterflinger, K., & Krumbein, W. E. (1997). Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiology Journal, 14(3), 219–230.

    Article  Google Scholar 

  • Tiano, P., Bianchi, R., & Vannucci, S. (1975). Research on presence of sulfur-cycle bacteria in stone of some historical buildings in florence. Plant and Soil, 43(1), 211–217.

    Article  Google Scholar 

  • Tomaselli, L. (2003). Biodeterioration processes on inorganic substrata. Coalition, 6(1), 5–9.

    Google Scholar 

  • Tretiach, M. (2004). Further additions to the Italian lichen flora. Cryptogamie Mycologie, 25(2), 173–183.

    Google Scholar 

  • Wessels, D. C. J., & Budel, B. (1995). Epilithic and cryptoendolithic cyanobacteria of clarens sandstone cliffs in the golden-gate-highlands-national-park, South-Africa. Botanica Acta, 108(3), 220–226.

    Google Scholar 

  • Witlach, R. B., & Johnson, R. G. (1974). Methods for staining organic matter in marine sediments. Journal of Sedimentary Petrology, 44, 1310–1312.

    Google Scholar 

Download references

Acknowledgement

The financial support of the Science, Research and Technology Ministry of Iran is gratefully acknowledged. I also wish to express my gratitude to Dr. A. A. Gorbushina for technical help and to the EU BIODAM project (http://biodam.biogema.de/index.html) for contribution during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, P., Krumbein, W.E. Biodeterioration of ancient stone materials from the Persepolis monuments (Iran). Aerobiologia 24, 27–33 (2008). https://doi.org/10.1007/s10453-007-9079-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-007-9079-6

Keywords

Navigation