Skip to main content
Log in

Aerobiological investigations inside repositories of the National Archive of the Republic of Cuba

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The objectives of this study were to evaluate the microbial prevalence inside six repositories of the National Archive of the Republic of Cuba in 2 months of the year and to examine some of the physiological features of fungi isolated in order to evaluate their potential for biodeterioration. The microbiological sampling was conducted in February and September using a slit impactor as air sampler. Appropriate selective culture media were used to isolate fungi and bacteria. Temperature and relative humidity were measured during the samplings. The cellulolytic activity and the production of acids and pigments of the fungi isolated were qualitatively determined. Total viable microbiota and bacteria concentrations were greater in February while the fungal concentration was higher in September. Aspergillus, Cladosporium, Penicillium, Curvularia and Alternaria were the predominant fungal genera in February while Cladosporium prevailed in September, although Fusarium, Mucor and Neurospora genera were also isolated in this month. The fungi isolated were capable of degrading cellulose and excreting pigments and acids. The Gram-positive bacteria group prevailed in the air and Corynebacterium, Streptomyces, Bacillus, Streptococcus, Staphylococcus, Enterobacter and Serratia were some of the genera identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aira, M. J., Rojas, T. I., & Jato, V. (2002). Fungi associated with three houses in Havana (Cuba). Grana, 41, 114–118.

    Article  Google Scholar 

  • Aspergillus Image Bank. (2006). Species images of Aspergillus. http://www.aspergillus.man.ac.uk/index.html. Accessed September 20, 2007.

  • Barnett, H. L., & Hunter, B. B. (1987). Illustrated genera of imperfect fungi (3rd ed.). Minneapolis: Burgess.

    Google Scholar 

  • Baxter, C. S., Wey, H. E., & Burg, W. E. (1981). Prospective analysis of the potential risk associated with inhalation of aflatoxin-contaminated grain dusts. Food Cosmetics Toxicology, 19, 763–769.

    Google Scholar 

  • Borrego, S., Pons, V., & Perdomo, I. (2008). La contaminación microbiana del aire en dos depósitos del Archivo Nacional de la República de Cuba. Revista CENIC Ciencias Biológicas, 39, 63–69.

    Google Scholar 

  • Borrego, S., Guiamet, P., Gómez de Saravia, S., Battistoni, P., Garcia, M., Lavin, P., et al. (2010a). The quality of air at archives and the biodeterioration of photographs. International Biodeterioration and Biodegradation, 64, 139–145.

    Article  CAS  Google Scholar 

  • Borrego, S., Perdomo, I., Guiamet, P., & Gómez de Saravia, S. (2010b). Estudio de la concentración microbiana en el aire de depósitos del Archivo Nacional de Cuba. AUGMDOMUS, 1, 114–133.

    Google Scholar 

  • Burge, H., & Gallup, D. (2005). Endotoxins. The Environmental Reporter, 3(3). http://www.emlab.com/s/sampling/env-report-03-2005.html. Accessed May 27, 2005.

  • Cappitelli, F., Fermo, P., Vecchi, R., Piazzalunga, A., Valli, G., Zanardini, E., et al. (2009). Chemical-physical and microbiological measurements for indoor air quality assessment at the Ca’Granada Historical Archive, Milan (Italy). Water, Air, and Soil pollution, 201, 109–120.

    Article  CAS  Google Scholar 

  • Cooley, J. D., Wong, W. C., Jumper, C. A., & Straus, D. C. (1999). Cellular and humoral responses in an animal model inhaling Penicillium chrysogenum spores. In E. Johanning (Ed.), Bioaerosols, fungi and mycotoxins. Proceeding of the third international conference on fungi, micotoxyns and bioaerosols (pp. 403–410). New York: Saratoga Springs.

    Google Scholar 

  • Côté, J., Chan, H., Brochu, G., & Chan-Yeung, M. (1991). Occupational asthma caused by exposure to neurospora in a plywood factory worker. British Journal of Industrial Medicine, 48, 279–282.

    Google Scholar 

  • de la Rosa, M. C., Mosso, M. A., & Ullán, C. (2002). El aire: Habitat y medio de transmisión de microorganismos. Observatorio Medioambiental, 5, 375–402.

    Google Scholar 

  • Deshpande, J., & Gangawane, L. V. (1997). Microorganism collected during a solar eclipse in India. Aerobiologia, 13, 289–294.

    Article  Google Scholar 

  • Dopazo, A., Aira, M. J., Armisén, M., & Vidal, C. (2002). Relationship of clinical and aerobiological data in the NW of Spain. Allergology and Immunopathology, 30, 74–78.

    CAS  Google Scholar 

  • Ellis, M. B. (1971). Dematiaceous hyphomycetes. Kew, England: Commonwealth Mycological Institute.

    Google Scholar 

  • Ellis, M. B. (1976). More dematiaceous hyphomycetes. Kew, England: Commonwealth Mycological Institute.

    Google Scholar 

  • EMLab P & K. (2010). Mucor. Fungal Library, TestAmerica Environmental Microbiology Laboratory. http://www.emlab.com/app/fungi/Fungi.po. Accessed May 25, 2010.

  • FEDECAI-01. (2007). Programa de certificación de calidad ambiental en interiores. Calidad ambiental en interiores: Criterios de muestreo (pp. 4–6). Federación Española de Empresas de Calidad Ambiental Interior (FEDECAI).

  • Fernández, F. (2005). Fungus of the month: Penicillium. The Environmental Reporter, 3(1). http://www.emlab.com/s/sampling/env-report-01-2005.html. Accessed February 27, 2005.

  • Florian, M.-L. E. (2004). Fungal facts. Solving fungal problems in heritage collections. London, UK: Archetype.

    Google Scholar 

  • Gautan, A. K., Sharma, S., Avasthi, S., & Bhadauria, R. (2011). Diversity, pathogenicity and toxicology of A. niger: An important spoilage fungi. Research Journal of Microbiology, 6, 270–280.

    Article  Google Scholar 

  • Gómez, B., Rojas, T. I., & Casadesús, L. (1989). Determinación de la capacidad celulolítica de hongos termófilos aislados en Cuba. Revista Biología de la Universidad de la Habana, 3, 39–42.

    Google Scholar 

  • Green, C. F., Scarpino, P. V., & Gibbs, S. G. (2003). Assessment and modeling of indoor fungal and bacterial bioaerosol concentrations. Aerobiologia, 19, 159–169.

    Article  Google Scholar 

  • Guiamet, P. S., Borrego, S., Lavin, P., Perdomo, I., & Gómez de Saravia, S. (2011). Biofouling and biodeterioration in material stored at historical archive of the museum of La Plata, Argentine and at the National Archive of the Republic of Cuba. Colloids and Surfaces B: Biointerfaces, 85, 229–234.

    Article  CAS  Google Scholar 

  • Hedayati, M. T., Pasqualotto, A. C., Warn, P. A., Bowyer, P., & Denning, D. W. (2007). Aspergillus flavus: Human pathogen, allergen and mycotoxin producer. Microbiology, 153, 1677–1692.

    Article  CAS  Google Scholar 

  • Holmberg, K. (1987). Indoor mould exposure and health effects. In B. Seifert, H. Esdom, M. Fischer, H. Rüden, & J. Wegner (Eds.), 4th International conference of indoor air quality and climate (Vol. 1, pp. 637–642). Berlin: Institute of Water, Soil, and Air Hygiene.

    Google Scholar 

  • Holt, J. G. (Ed.). (1984). Bergey’s manual of systematic bacteriology (Vol. 1). Baltimore, London: Williams & Wilkins.

    Google Scholar 

  • Holt, J. G. (Ed.). (1986). Bergey’s manual of systematic bacteriology (Vol. 2). Baltimore, London: Williams & Wilkins.

    Google Scholar 

  • Klich, M. A., & Pitt, J. I. (1994). A laboratory guide to common Aspergillus species and their teleomorphs. North Ryde, Australia: CSIRO, Division of Food Processing.

    Google Scholar 

  • Madrigal, B., Arenal, J. J., Torres, A., Peñarrubia, M. J., Vara, A., Ruiz, M., et al. (2008). Mucormicosis yeyunal en paciente con linfoma de Hodgkin. Revista Española de Enfermedades Digestivas, 100, 507–510.

    Article  CAS  Google Scholar 

  • Maggi, O., Persiani, A. M., Gallo, F., Valenti, P., & Pasquariello, G. (2000). Airborne fungal spores in dust present in archives: Proposal for a detection method, new for archival materials. Aerobiologia, 16, 429–434.

    Article  Google Scholar 

  • Mesquita, N., Portugal, A., Videira, S., Rodríguez-Echeverría, S., Bandeira, A. M. L., Santos, M. J. A., et al. (2009). Fungal diversity in ancient documents. A case study on Archive of the University of Coimbra. International Biodeterioration and Biodegradation, 63, 626–629.

    Article  CAS  Google Scholar 

  • Miller, V., Sasala, K., Hogan, M., & Roberts, L. (2004). Health effect of project SHAD biological agent: Bacillus globigii. Maryland, USA: National Academies, The Center for Research Information. Contract no. IOM-2794-04-001. http://www.iom.edu/~/media/Files/Report%20Files/2007/Long-Term-Health-Effects-of-Participation-in-Project-SHAD-Shipboard-Hazard-and-Defense/CALCOFLUOR.pdf. Accessed November 12, 2007.

  • Nevalainen, A., & Morawaska, L. (2009). Biological agents in indoor environments. Assessment of health risks. Work conducted by a WHO Expert Group between 2000 and 2003. http://www.ilaqh.qut.edu.au/Misc/BIOLOGICAL_AGENTS_2009.pdf. Accessed September 4, 2009.

  • Nielsen, K. F. (2003). Mycotoxin production by indoor molds. Fungal Genetics and Biology, 39, 103–117.

    Article  CAS  Google Scholar 

  • Pasenen, A., Kasanen, J., Rautiala, S., Ikaheimo, M., Rantamaki, J., Kaariainen, H., et al. (2000). Fungal growth and survival in building materials under fluctuating moisture and temperature conditions. International Biodeterioration and Biodegradation, 46, 117–127.

    Article  Google Scholar 

  • Person, A. K., Chudgar, S. M., Norton, B. L., Tong, B. C., & Stout, J. E. (2010). Aspergillus niger: An unusual cause of invasive pulmonary aspergillosis. Journal of Medical Microbiology, 59, 834–838.

    Article  CAS  Google Scholar 

  • Pinzari, F., Paquariello, G., & De Mico, A. (2006). Biodeterioration of paper: A SEM study of fungal spoilage reproduced under controlled conditions. Macromolecular Symposia, 238, 57–66.

    Article  CAS  Google Scholar 

  • Pitt, J. I. (2000). A laboratory guide to common Penicillium species. Color appendix. Third edition published by Food Science Australia. http://www.dehs.umn.edu/iaq_fib_fg_gloss_penicilliumsp.htm. Accessed October 26, 2007.

  • Radler de Aquino, F., & de Góes, L. F. (2000). Guidelines for indoor air quality in offices in Brazil. Proceedings of Healthy Buildings, 4, 549–553.

    Google Scholar 

  • Ramírez, P., & Coha, J. M. (2003). Enzymatic degradation of cellulose for thermophilic actinomycete: Isolation, characterization and cellulolytic activity determination. Revista Peruana de Biologia, 10, 67–77.

    Google Scholar 

  • Rintala, H., Pitkäranta, M., Toivola, M., Paulin, L., & Nevalainen, A. (2008). Diversity and seasonal dynamics of bacterial community in indoor environment. BMC Microbiology, 8, 56. doi:10.1186/1471-2180-8-56.

    Article  Google Scholar 

  • Rojas, T. I., Martínez, E., Gómez, Y., & Alvarado, Y. (2002). Airborne spores of Aspergillus species in cultural institutions al Havana university. Grana, 41, 190–193.

    Article  Google Scholar 

  • Rojas, T. I., Martínez, E., Aira, M. J., & Almaguer, M. (2008). Aeromicota de ambientes internos: Comparación de métodos de muestreo. Boletín Micológico, 23, 67–73.

    Google Scholar 

  • Sabariego, S., Díaz de la Guardia, C., & Sánchez, F. A. (2004). Estudio aerobiológico de los conidios de Alternaria y Cladosporium en la atmósfera de la ciudad de Almería (SE de España). Revista Iberoamerica de Micología, 21, 121–127.

    Google Scholar 

  • Scott, J., Untereiner, W. A., Wong, B., Straus, N. A., & Malloch, D. (2004). Genotypic variation in Penicillium chrysogenun from indoor environments. Mycologia, 96, 1095–1105.

    Article  CAS  Google Scholar 

  • Singh, J. (2005). Toxic moulds and indoor air quality. Indoor and Built Environment, 14, 229–234.

    Article  CAS  Google Scholar 

  • Smith, G. (1980). Ecology and field biology (2nd ed.). New York: Harper & Row.

    Google Scholar 

  • Storey, E., Dangman, K. H., Schenck, P., DeBernardo, R. L., Yang, C. S., Bracker, A., et al. (2004). Guidance for clinicians on the recognition and management of health effects related to mold exposure and moisture indoors. Farmington, USA: University of Connecticut Health Center, Center for Indoor Environments and Health. http://www.structuretec.com/pdfs/AirQuality.pdf. Accessed April 4, 2006.

  • Toivola, M., Alm, S., Reponen, T., Kolari, S., & Nevalainen, A. (2002). Personal exposure and microenvironmental concentration of particles and bioaerosols. Journal of Environmental Monitoring, 4, 166–174.

    Article  CAS  Google Scholar 

  • Valentín, N. (2010). Microorganisms in museum collections. COALITION, (19), 2–5.

    Google Scholar 

  • Valentín, N., Vaillant, M., & Guerrero, H. (1997). Programa de control integrado de plagas en bienes culturales de países de clima mediterráneo y tropical. Apoyo, 7, 13–14.

    Google Scholar 

  • Walker, A. (2003). Basic preservation guidelines for library and archive collections. National Preservation Office, NPO Preservation Guidance, British Library. http://www.bl.uk/b1pac/pdf/basic.pdf. Accessed February 9, 2006.

Download references

Acknowledgments

The authors thank Dr. Teresa Rojas for providing the Chirana Aeroscope to carry out the study. We also thank B.A. Enrique Vergés Gorostiza for his valuable revision and edition of the translation to the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofía Borrego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borrego, S., Perdomo, I. Aerobiological investigations inside repositories of the National Archive of the Republic of Cuba. Aerobiologia 28, 303–316 (2012). https://doi.org/10.1007/s10453-011-9235-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-011-9235-x

Keywords

Navigation