Skip to main content
Log in

First eigenvalue of the p-Laplace operator along the Ricci flow

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this article, we mainly investigate continuity, monotonicity and differentiability for the first eigenvalue of the p-Laplace operator along the Ricci flow on closed manifolds. We show that the first p-eigenvalue is strictly increasing and differentiable almost everywhere along the Ricci flow under some curvature assumptions. In particular, for an orientable closed surface, we construct various monotonic quantities and prove that the first p-eigenvalue is differentiable almost everywhere along the Ricci flow without any curvature assumption, and therefore derive a p-eigenvalue comparison-type theorem when its Euler characteristic is negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao X.-D.: Eigenvalues of \({(-\Delta+\frac R2)}\) on manifolds with nonnegative curvature operator. Math. Ann. 337(2), 435–441 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cao X.-D.: First eigenvalues of geometric operators under the Ricci flow. Proc. Am. Math. Soc. 136, 4075–4078 (2008)

    Article  MATH  Google Scholar 

  3. Cao, X.-D., Hou, S.-B., Ling, J.: Estimate and monotonicity of the first eigenvalue under Ricci flow. Preprint (2009)

  4. Chang S.-C., Lu P.: Evolution of Yamabe constant under Ricci flow. Ann. Glob. Anal. Geom. 31(2), 147–153 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chow B.: The Ricci flow on the 2-sphere. J. Diff. Geom. 33, 325–334 (1991)

    MATH  Google Scholar 

  6. Chow B.: The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature. Comm. Pure Appl. Math. 45, 1003–1014 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chow B., Knopf D.: The Ricci Flow: An Introduction, Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2004)

    Google Scholar 

  8. Chow B., Chu S.C., Glickenstein D., Guentheretc C., Isenberg J., Ivey T., Knopf D., Lu P., Luo F., Ni L.: The Ricci Flow: Techniques and Applications. Part II: Analytic Aspects. Mathematical Surveys and Monographs 144. American Mathematical Society, Providence, RI (2008)

    Google Scholar 

  9. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci flow.: Lectures in Contemporary Mathematics 3, Science Press and American Mathematical Society, 2006

  10. Grosjean J.-F.: p-Laplace operator and diameter of manifolds. Ann. Glob. Anal. Geom. 28, 257–270 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hamilton R.S.: Three manifolds with positive Ricci curvature. J. Diff. Geom. 17, 255–306 (1982)

    MATH  MathSciNet  Google Scholar 

  12. Hamilton R.S.: The Ricci Flow on Surface. Mathematics and General Relativity (Contemporary Mathematics 71), pp. 237–262. American Mathematical Society, Providence, RI (1988)

    Google Scholar 

  13. Kato T.: Perturbation Theory for Linear Operator, 2nd edn. Springer, Berlin (1984)

    Google Scholar 

  14. Kawai S., Nakauchi N.: The first eigenvalue of the p-Laplacian on a compact Riemannian manifold. Nonlinear Anal. 55, 33–46 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kleiner, B., Lott, J.: Note on Perelman’s Papers. arXiv: math.DG/0605.667v2

  16. Kotschwar B., Ni L.: Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula. Ann. Sci. Ecole Norm. Supp. 42(1), 1–36 (2009)

    MATH  MathSciNet  Google Scholar 

  17. Li J.-F.: Eigenvalues and energy functionals with monotonicity formulae under Ricci flow. Math. Ann. 338(4), 927–946 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ling, J.: A comparison theorem and a sharp bound via the Ricci flow. arXiv: math.DG/0710.2574

  19. Ling, J.: A class of monotonic quantities along the Ricci flow. arXiv: math.DG/0710.4291v2

  20. Ma L.: Eigenvalue monotonicity for the Ricci-Hamilton flow. Ann. Glob. Anal. Geom. 29, 287–292 (2006)

    Article  MATH  Google Scholar 

  21. Matei A.-M.: First eigenvalue for the p-Laplace operator. Nonlinear Anal. 39, 1051–1068 (2000)

    Article  MathSciNet  Google Scholar 

  22. Mukherjea A., Pothoven K.: Real and Functional Analysis, 2nd edn. Plenum Press, New York (1984)

    MATH  Google Scholar 

  23. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv: math.DG/0211159

  24. Reed M., Simon B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, Harcourt Brace Jovanovich Publishers, New York (1978)

    MATH  Google Scholar 

  25. Serrin J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tolksdorff P.: Regularity for a more general class of quasilinear elliptic equations. J. Diff. Equ. 51, 126–150 (1984)

    Article  Google Scholar 

  27. Wu J.-Y.: The first eigenvalue of the Laplace operator under the Yamabe flow. Chin. Ann. Math. Ser. A 30, 631–638 (2009)

    Article  MATH  Google Scholar 

  28. Wu, J.-Y.: First eigenvalue monotonicity for the p-Laplace operator under the Ricci flow. Acta Math. Sin. (English Series), to appear

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Yong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, JY., Wang, EM. & Zheng, Y. First eigenvalue of the p-Laplace operator along the Ricci flow. Ann Glob Anal Geom 38, 27–55 (2010). https://doi.org/10.1007/s10455-010-9199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-010-9199-z

Keywords

Mathematics Subject Classification (2000)

Navigation