Skip to main content
Log in

Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Vascularization of tissue-engineered constructs is essential to provide sufficient nutrient supply and hemostasis after implantation into target sites. Co-cultures of adipose-derived stem cells (ASC) with outgrowth endothelial cells (OEC) in fibrin gels were shown to provide an effective possibility to induce vasculogenesis in vitro. However, the mechanisms of the interaction between these two cell types remain unclear so far. The aim of this study was to evaluate differences of direct and indirect stimulation of ASC-induced vasculogenesis, the influence of ASC on network stabilization and molecular mechanisms involved in vascular structure formation. Endothelial cells (EC) were embedded in fibrin gels either containing non-coated or ASC-coated microcarrier beads as well as ASC alone. Moreover, EC-seeded constructs incubated with ASC-conditioned medium were used in addition to constructs with ASC seeded on top. Vascular network formation was visualized by green fluorescent protein expressing cells or immunostaining for CD31 and quantified. RT-qPCR of cells derived from co-cultures in fibrin was performed to evaluate changes in the expression of EC marker genes during the first week of culture. Moreover, angiogenesis-related protein levels were measured by performing angiogenesis proteome profiler arrays. The results demonstrate that proximity of endothelial cells and ASC is required for network formation and ASC stabilize EC networks by developing pericyte characteristics. We further showed that ASC induce controlled vessel growth by secreting pro-angiogenic and regulatory proteins. This study reveals angiogenic protein profiles involved in EC/ASC interactions in fibrin matrices and confirms the usability of OEC/ASC co-cultures for autologous vascular tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mikos AG, Sarakinos G, Lyman MD, Ingber DE, Vacanti JP, Langer R (1993) Prevascularization of porous biodegradable polymers. Biotechnol Bioeng 42:716–723

    Article  PubMed  CAS  Google Scholar 

  2. Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029–1034

    Article  PubMed  CAS  Google Scholar 

  3. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  PubMed  CAS  Google Scholar 

  4. Edelman ER, Mathiowitz E, Langer R, Klagsbrun M (1991) Controlled and modulated release of basic fibroblast growth factor. Biomaterials 12:619–626

    Article  PubMed  CAS  Google Scholar 

  5. Murphy WL, Peters MC, Kohn DH, Mooney DJ (2000) Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21:2521–2527

    Article  PubMed  CAS  Google Scholar 

  6. Soker S, Machado M, Atala A (2000) Systems for therapeutic angiogenesis in tissue engineering. World J Urol 18:10–18

    Article  PubMed  CAS  Google Scholar 

  7. Nomi M, Atala A, Coppi PD, Soker S (2002) Principals of neovascularization for tissue engineering. Mol Asp Med 23:463–483

    Article  CAS  Google Scholar 

  8. Fuchs S, Hofmann A, Kirkpatrick CJ (2007) Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells. Tissue Eng 13:2577–2588

    Article  PubMed  CAS  Google Scholar 

  9. Berthod F, Germain L, Tremblay N, Auger FA (2006) Extracellular matrix deposition by fibroblasts is necessary to promote capillary-like tube formation in vitro. J Cell Physiol 207:491–498

    Article  PubMed  CAS  Google Scholar 

  10. Nakatsu MN, Sainson RCA, Aoto JN, Taylor KL, Aitkenhead M, Pérez-del-Pulgar S, Carpenter PM, Hughes CCW (2003) Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc Res 66:102–112

    Article  PubMed  CAS  Google Scholar 

  11. Elbjeirami WM, West JL (2006) Angiogenesis-like activity of endothelial cells co-cultured with VEGF-producing smooth muscle cells. Tissue Eng 12:381–390

    Article  PubMed  CAS  Google Scholar 

  12. Ucuzian AA, Bufalino DV, Pang Y, Greisler HP (2013) Angiogenic endothelial cell invasion into fibrin is stimulated by proliferating smooth muscle cells. Microvasc Res 90:40–47

    Article  PubMed  CAS  Google Scholar 

  13. Strassburg S, Nienhueser H, Stark GB, Finkenzeller G, Torio-Padron N (2013) Human adipose-derived stem cells enhance the angiogenic potential of endothelial progenitor cells, but not of human umbilical vein endothelial cells. Tissue Eng Part A 19:166–174

    Article  PubMed  CAS  Google Scholar 

  14. Moioli EK, Clark PA, Chen M, Dennis JE, Erickson HP, Gerson SL, Mao JJ (2008) Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS One 3:e3922

    Article  PubMed  PubMed Central  Google Scholar 

  15. Park IS, Kim SH, Jung Y, Rhie JW, Kim SH (2013) Endothelial differentiation and vasculogenesis induced by three-dimensional adipose-derived stem cells. Anat Rec Adv Integr Anat Evol Biol 296:168–177

    Article  CAS  Google Scholar 

  16. Ghajar CM, Blevins KS, Hughes CCW, George SC, Putnam AJ (2006) Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng 12:2875–2888

    Article  PubMed  CAS  Google Scholar 

  17. Zeve D, Tang W, Graff J (2009) Fighting fat with fat: the expanding field of adipose stem cells. Cell Stem Cell 5:472–481

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Holnthoner W, Hohenegger K, Husa AM, Muehleder S, Meinl A, Peterbauer-Scherb A, Redl H (2012) Adipose-derived stem cells induce vascular tube formation of outgrowth endothelial cells in a fibrin matrix. J Tissue Eng Regen Med. doi:10.1002/term

    PubMed  Google Scholar 

  19. Fuchs S, Dohle E, Kolbe M, Kirkpatrick CJ (2010) Outgrowth endothelial cells: sources, characteristics and potential applications in tissue engineering and regenerative medicine. Bioreactor systems for tissue engineering II. Springer, Berlin

    Google Scholar 

  20. Kachgal S, Putnam AJ (2011) Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis 14:47–59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Verseijden F, Posthumus-van Sluijs SJ, van Neck JW, Hofer SOP, Hovius SER, van Osch GJVM (2012) Vascularization of prevascularized and non-prevascularized fibrin-based human adipose tissue constructs after implantation in nude mice. J Tissue Eng Regen Med 6:169–178

    Article  PubMed  CAS  Google Scholar 

  22. Rao RR, Peterson AW, Ceccarelli J, Putnam AJ, Stegemann JP (2012) Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis 15:253–264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Buchta C, Hedrich HC, Macher M, Höcker P, Redl H (2005) Biochemical characterization of autologous fibrin sealants produced by CryoSeal® and Vivostat® in comparison to the homologous fibrin sealant product Tissucol/Tisseel®. Biomaterials 26:6233–6241

    Article  PubMed  CAS  Google Scholar 

  24. Fortelny RH, Petter-Puchner AH, Ferguson J, Gruber-Blum S, Brand J, Mika K, Redl H (2011) A comparative biomechanical evaluation of hernia mesh fixation by fibrin sealant. J Surg Res 171:576–581

    Article  PubMed  Google Scholar 

  25. Peterbauer-Scherb A, Danzer M, Gabriel C, van Griensven M, Redl H, Wolbank S (2012) In vitro adipogenesis of adipose-derived stem cells in 3D fibrin matrix of low component concentration. J Tissue Eng Regen Med 6:434–442

    Article  PubMed  CAS  Google Scholar 

  26. Wolbank S, Peterbauer A, Fahrner M, Hennerbichler S, van Griensven M, Stadler G, Redl H, Gabriel C (2007) Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng 13:1173–1183

    Article  PubMed  CAS  Google Scholar 

  27. Petzelbauer P, Bender JR, Wilson J, Pober JS (1993) Heterogeneity of dermal microvascular endothelial cell antigen expression and cytokine responsiveness in situ and in cell culture. J Immunol 151:5062–5072

    PubMed  CAS  Google Scholar 

  28. Bouïs D, Kusumanto Y, Meijer C, Mulder NH, Hospers GAP (2006) A review on pro- and anti-angiogenic factors as targets of clinical intervention. Pharmacol Res 53:89–103

    Article  PubMed  Google Scholar 

  29. Carrion B, Kong YP, Kaigler D, Putnam AJ (2013) Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor. Exp Cell Res 319:2964–2976

    Article  PubMed  CAS  Google Scholar 

  30. Hoch AI, Binder BY, Genetos DC, Leach JK (2012) Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. PLoS One 7:e35579

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23

    Article  PubMed  Google Scholar 

  32. DeLisser HM, Christofidou-Solomidou M, Strieter RM, Burdick MD, Robinson CS, Wexler RS, Kerr JS, Garlanda C, Merwin JR, Madri JA, Albelda SM (1997) Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 151:671–677

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Bach TL, Barsigian C, Chalupowicz DG, Busler D, Yaen CH, Grant DS, Martinez J (1998) VE-cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Exp Cell Res 238:324–334

    Article  PubMed  CAS  Google Scholar 

  34. Mustonen T, Alitalo K (1995) Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 129:895–898

    Article  PubMed  CAS  Google Scholar 

  35. Starke RD, Ferraro F, Paschalaki KE, Dryden NH, McKinnon TAJ, Sutton RE, Payne EM, Haskard DO, Hughes AD, Cutler DF, Laffan MA, Randi AM (2011) Endothelial von Willebrand factor regulates angiogenesis. Blood 117:1071–1080

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Cao R, Bråkenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9:604–613

    Article  PubMed  CAS  Google Scholar 

  37. Nadar SK, Blann A, Beevers DG, Lip GYH (2005) Abnormal angiopoietins 1&2, angiopoietin receptor Tie-2 and vascular endothelial growth factor levels in hypertension: relationship to target organ damage [a sub-study of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)]. J Intern Med 258:336–343

    Article  PubMed  CAS  Google Scholar 

  38. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Article  PubMed  Google Scholar 

  39. Gately S, Twardowski P, Stack MS, Cundiff DL, Grella D, Castellino FJ, Enghild J, Kwaan HC, Lee F, Kramer RA, Volpert O, Bouck N, Soff GA (1997) The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. PNAS 94:10868–10872

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Stetler-Stevenson WG (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Investig 103:1237–1241

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170:3369–3376

    Article  PubMed  CAS  Google Scholar 

  42. Li C, Hampson IN, Hampson L, Kumar P, Bernabeu C, Kumar S (2000) CD105 antagonizes the inhibitory signaling of transforming growth factor β1 on human vascular endothelial cells. FASEB J 14:55–64

    PubMed  CAS  Google Scholar 

  43. Rusnati M, Camozzi M, Moroni E, Bottazzi B, Peri G, Indraccolo S, Amadori A, Mantovani A, Presta M (2004) Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis. Blood 104:92–99

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Petra Aigner for HUVEC isolation, Andreas Teuschl for Collagen I/III and Michaela Kerschbaum for qPCR primer validation. Furthermore, we thank Philip Heher, Christiane Fuchs and Johanna Prüller (University of Applied Sciences Technikum Vienna) for their excellent technical assistance during mRNA isolation and RT-qPCR and Peter Petzelbauer (Medical University of Vienna) for his support. This project was funded by the EU Biodesign program (262948).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Holnthoner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2938 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohringer, S., Hofbauer, P., Schneider, K.H. et al. Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells. Angiogenesis 17, 921–933 (2014). https://doi.org/10.1007/s10456-014-9439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-014-9439-0

Keywords

Navigation