Skip to main content

Advertisement

Log in

Integrating belowground carbon dynamics into Yield-SAFE, a parameter sparse agroforestry model

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Agroforestry combines perennial woody elements (e.g. trees) with an agricultural understory (e.g. wheat, pasture) which can also potentially be used by a livestock component. In recent decades, modern agroforestry systems have been proposed at European level as land use alternatives for conventional agricultural systems. The potential range of benefits that modern agroforestry systems can provide includes farm product diversification (food and timber), soil and biodiversity conservation and carbon sequestration, both in woody biomass and the soil. Whilst typically these include benefits such as food and timber provision, potentially, there are benefits in the form of carbon sequestration, both in woody biomass and in the soil. Quantifying the effect of agroforestry systems on soil carbon is important because it is one means by which atmospheric carbon can be sequestered in order to reduce global warming. However, experimental systems that can combine the different alternative features of agroforestry systems are difficult to implement and long-term. For this reason, models are needed to explore these alternatives, in order to determine what benefits different combinations of trees and understory might provide in agroforestry systems. This paper describes the integration of the widely used soil carbon model RothC, a model simulating soil organic carbon turnover, into Yield-SAFE, a parameter sparse model to estimate aboveground biomass in agroforestry systems. The improvement of the Yield-SAFE model focused on the estimation of input plant material into soil (i.e. leaf fall and root mortality) while maintaining the original aspiration for a simple conceptualization of agroforestry modeling, but allowing to feed inputs to a soil carbon module based on RothC. Validation simulations show that the combined model gives predictions consistent with observed data for both SOC dynamics and tree leaf fall. Two case study systems are examined: a cork oak system in South Portugal and a poplar system in the UK, in current and future climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. DPM/RPM ratios are proposed in Coleman and Jenkinson (2014) for Agricultural crops and improved grasslands (1.44; 59% DPM and 41% is RPM), Unimproved grasslands and scrub (0.67; 40% DPM and 60% RPM); Deciduous or tropical woodland (0.25; 20% DPM and 80% RPM) and Farmyard manure (1; DPM 49%, RPM 49% and HUM 2%). When day of tree harvest occurs, the ratio between DMP and RPM is considered 0.25.

References

  • Bolinder MA, Angers DA, Dubuc JP (1997) Estimating shoot to root ratios and annual carbon inputs in soils for cereal crops. Agric Ecosyst Environ 63:61–66. doi:10.1016/S0167-8809(96)01121-8

    Article  CAS  Google Scholar 

  • Cardinael R, Chevallier T, Cambou A et al (2017) Increased soil organic carbon stocks under agroforestry: a survey of six different sites in France. Agric Ecosyst Environ 236:243–255. doi:10.1016/j.agee.2016.12.011

    Article  Google Scholar 

  • Caritat A, Bertoni G, Molinas M et al (1996) Litterfall and mineral return in two cork-oak forests in northeast Spain. Ann Des Sci For 53:1049–1058. doi:10.1051/forest:19960601

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 847–940

    Google Scholar 

  • Coleman K, Jenkinson D (2014) RothC—a model for the turnover of carbon in soil—model description and users guide. Rothamsted Research, Harpenden

    Google Scholar 

  • Cusack DF, Chou WW, Yang WH et al (2009) Controls on long-term root and leaf litter decomposition in neotropical forests. Glob Change Biol 15:1339–1355. doi:10.1111/j.1365-2486.2008.01781.x

    Article  Google Scholar 

  • den Herder M, Moreno G, Mosquera-losada R et al (2017) Current extent and stratification of agroforestry in the European Union. Agric Ecosyst Environ 241:121–132

    Article  Google Scholar 

  • Dziadowiec H, Jonczak J, Czarnecki A, Kacprowicz K (2008) Comparison of plant litter fall in two poplar plantations of Hybryda 275 and Robusta. Rocz Glebozn 59:76–83

    Google Scholar 

  • Fagerholm N, Torralba M, Burgess PJ, Plieninger T (2016) A systematic map of ecosystem services assessments around European agroforestry. Ecol Indic 62:47–65

    Article  Google Scholar 

  • Ford A (1999) Modelling the environment. Andrew Ford Island Press, Washington

    Google Scholar 

  • Francaviglia R, Coleman K, Whitmore AP et al (2012) Changes in soil organic carbon and climate change—application of the RothC model in agro-silvo-pastoral Mediterranean systems. Agric Syst 112:48–54. doi:10.1016/j.agsy.2012.07.001

    Article  Google Scholar 

  • Gan YT, Campbell CA, Janzen HH et al (2009) Root mass for oilseed and pulse crops: growth and distribution in the soil profile. Can J Plant Sci 89:883–893. doi:10.4141/CJPS08154

    Article  Google Scholar 

  • Gill H, Abrol I (1993) Afforestation and amelioration of salt-affected soils in India. In: Davidson N, Galloway R (eds) The productive use of saline land. Proceedings of a workshop held in Perth, Western Australia. ACIAR Proceedings No. 42. ACIAR, Perth, pp 23–27

  • Glover JD, Reganold JP, Cox CM (2012) Agriculture: plant perennials to save Africa’s soils. Nature 489:359–361. doi:10.1038/489359a

    Article  PubMed  CAS  Google Scholar 

  • Gosme M, Dufour L, Inurreta-Aguirre H, Dupraz C (2016) Microclimate effect of agroforestry on diurnal temperature cycle. In: Gosme M (ed) 3rd European agroforestry conference—Montpellier, 23–25 May. Montpellier, pp 183–186

  • Graves AR, Burgess PJ, Palma JHN et al (2007) Development and application of bio-economic modelling to compare silvoarable, arable, and forestry systems in three European countries. Ecol Eng 29:434–449. doi:10.1016/j.ecoleng.2006.09.018

    Article  Google Scholar 

  • Hermle S, Anken T, Leifeld J, Weisskopf P (2008) The effect of the tillage system on soil organic carbon content under moist, cold-temperate conditions. Soil Tillage Res 98:94–105. doi:10.1016/j.still.2007.10.010

    Article  Google Scholar 

  • IPCC (2006) Guidelines for national greenhouse gas inventories, vol 4: agriculture, forestry and other land use. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html. Accessed 15 Sept 2017

  • Lal R (2005) Soil carbon sequestration in natural and managed tropical forest ecosystems. J Sustain For 21:1–30. doi:10.1300/J091v21n01

    Article  Google Scholar 

  • Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34:443–454. doi:10.1007/s13593-014-0212-y

    Article  CAS  Google Scholar 

  • Madeira MV, Fabião A, Pereira JS et al (2002) Changes in carbon stocks in Eucalyptus globulus L. plantations induced by different water and nutrient availability. For Ecol Manag 171:75–85. doi:10.1016/S0378-1127(02)00462-0

    Article  Google Scholar 

  • Martin-Chave A, Mazzia C, Beral C, Capowiez Y (2016) How Agroforestry microclimates could affect the daily-activity of major predatory arthropods in organic vegetable crops? In: Gosme M (ed) 3rd European agroforestry conference—Montpellier, 23–25 May. Montpellier, pp 62–65

  • Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited envionmental benefit of agroforestry systems. Agrofor Ecosyst 61:281–295

    Article  Google Scholar 

  • Munns R, Schmidt S, Beveridge C (2016) Growth analysis: a quantitative approach. In: Munns R, Schmidt S, Beveridge C (eds) Plants in action, 2 edn. Australian Society of Plant Scientists, New Zealand Society of Plant Biologists, and New Zealand Institute of Agricultural and Horticultural Science

  • Oberholzer HR, Leifeld J, Mayer J (2014) Changes in soil carbon and crop yield over 60 years in the Zurich Organic Fertilization Experiment, following land-use change from grassland to cropland. J Plant Nutr Soil Sci 177:696–704. doi:10.1002/jpln.201300385

    Article  CAS  Google Scholar 

  • Palma J (2017) Resource communication: CliPick—climate change web picker. A tool bridging daily climate needs in process based modelling in forestry and agriculture. For Syst. doi:10.5424/fs/2017261-10251

    Article  Google Scholar 

  • Palma J, Graves A, Bunce R et al (2007) Modelling environmental benefits of silvoarable agroforestry in Europe. Agric Ecosyst Environ 119:320–334

    Article  Google Scholar 

  • Palma JN, Paulo J, Faias S et al (2015) Adaptive management and debarking schedule optimization of Quercus suber L. stands under climate change: case study in Chamusca, Portugal. Reg Environ Change. doi:10.1007/s10113-015-0818-x

    Article  Google Scholar 

  • Rao MR, Nair PKR, Ong CK (1998) Biophysical interactions in tropical agroforestry systems. Agrofor Syst 38:3–50. doi:10.1023/A:1005971525590

    Article  Google Scholar 

  • Schroeder P (1994) Carbon storage benefits of agroforestry systems. Agrofor Syst 27:89–97. doi:10.1007/BF00704837

    Article  Google Scholar 

  • Schroth G, Zech W (1995) Above- and below-ground biomass dynamics in a sole cropping and an alley cropping system with Gliricidia sepium in the semi-deciduous rainforest zone of West Africa. Agrofor Syst 31:181–198. doi:10.1007/BF00711725

    Article  Google Scholar 

  • Shanker AK, Newaj R, Rai P et al (2005) Microclimate modifications, growth and yield of intercrops under Hardwickia binata Roxb. based agroforestry system. Arch Agron Soil Sci 51:281–291. doi:10.1080/03650340500053407

    Article  Google Scholar 

  • Sloan VL, Fletcher BJ, Press MC et al (2013) Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems. Glob Change Biol 19:3668–3676. doi:10.1111/gcb.12322

    Article  Google Scholar 

  • SOILSERVICE (2012) SOILSERVICE: Conflicting demands of land use, soil biodiversity and the sustainable delivery of ecosystem goods and services in Europe. Final publishable report

  • Thomas SC, Martin AR (2012) Carbon content of tree tissues: a synthesis. Forests 3:332–352

    Article  Google Scholar 

  • Upson M (2014) The carbon storage benefits of agroforestry and farm woodlands. PhD Thesis, Cranfield University. http://dspace.lib.cranfield.ac.uk/handle/1826/9298. Accessed 15 Sept 2017

  • van der Werf W, Keesman K, Burgess P et al (2007) Yield-SAFE: a parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecol Eng 29:419–433. doi:10.1016/j.ecoleng.2006.09.017

    Article  Google Scholar 

Download references

Funding

European Commission through the AGFORWARD FP7 research Project (contract 613520), Forest Research Center strategic Project (PEst OE/AGR/UI0239/2014), the Portuguese Foundation for Science and Technology (FCT) fellowships SFRH/BD/52691/2014 and SFRH/BPD/96475/2013, XUNTA DE GALICIA, Consellería de Cultura, Educación e Ordenación Universitaria (“Programa de axudas á etapa posdoutoral”) (contract ED481B 2016/071-0)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. N. Palma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palma, J.H.N., Crous-Duran, J., Graves, A.R. et al. Integrating belowground carbon dynamics into Yield-SAFE, a parameter sparse agroforestry model. Agroforest Syst 92, 1047–1057 (2018). https://doi.org/10.1007/s10457-017-0123-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-017-0123-4

Keywords

Navigation