Skip to main content
Log in

Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Autoregressive models are commonly employed to analyze empirical time series. In practice, however, any autoregressive model will only be an approximation to reality and in order to achieve a reasonable approximation and allow for full generality the order of the autoregression, h say, must be allowed to go to infinity with T, the sample size. Although results are available on the estimation of autoregressive models when h increases indefinitely with T such results are usually predicated on assumptions that exclude (1) non-invertible processes and (2) fractionally integrated processes. In this paper we will investigate the consequences of fitting long autoregressions under regularity conditions that allow for these two situations and where an infinite autoregressive representation of the process need not exist. Uniform convergence rates for the sample autocovariances are derived and corresponding convergence rates for the estimates of AR(h) approximations are established. A central limit theorem for the coefficient estimates is also obtained. An extension of a result on the predictive optimality of AIC to fractional and non-invertible processes is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H. (1969). Fitting autoregressive models for prediction. Annals of Institute of Statistical Mathematics. 21, 243–247

    Article  MATH  MathSciNet  Google Scholar 

  • Akaike H. (1970). Statistical predictor identification. Annals of Institute of Statistical Mathematics. 22, 203–217

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson T.W. (1971). The statistical analysis of time series. New York, Wiley

    MATH  Google Scholar 

  • Baillie R.T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics. 73, 5–59

    Article  MATH  MathSciNet  Google Scholar 

  • Baxter G. (1962). An asymptotic result for the finite predictor. Mathematica Scandinavica. 10, 137–144

    MATH  MathSciNet  Google Scholar 

  • Beran J. (1992). Statistical methods for data with long-range dependence. Statistical Science. 7, 404–427

    Google Scholar 

  • Beran J. (1994). Statistics for long memory processes. New York, Chapman and Hall

    MATH  Google Scholar 

  • Beran J., Bhansali R.J., Ocker D. (1998). On unified model selection for stationary and nonstationary short- and long-memory autoregressive processes. Biometrika. 85, 921–934

    Article  MATH  MathSciNet  Google Scholar 

  • Burg J. (1968). A new analysis technique for time series data. Technical report, Advanced Study Institute on Signal Processing, N.A.T.O., Enschede, Netherlands

  • Davies R.B., Harte D.S. (1987). Tests for hurst effect. Biometrika. 74, 95–101

    Article  MATH  MathSciNet  Google Scholar 

  • Durbin J. (1960). The fitting of time series models. Review of International Statistical Institute. 28, 233–244

    Article  Google Scholar 

  • Granger C.W.J., Joyeux R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis. 1, 15–29

    MATH  MathSciNet  Google Scholar 

  • Grey H.L., Zhang N.-F., Woodward W.A. (1989). On generalized fractional processes. Journal of Time Series Analysis. 10, 233–257

    MathSciNet  Google Scholar 

  • Grose S., Poskitt D.S. (2005). Empirical evidence on nonstandard autogregressive approximations. Working Paper, Monash University

    Google Scholar 

  • Hannan E.J., Deistler M. (1988). The statistical theory of linear systems. New York, Wiley

    MATH  Google Scholar 

  • Hannan E.J., Quinn B.G. (1979). The determination of the order of an autoregression. Journal of Royal Statistical Society, B 41, 190–195

    MATH  MathSciNet  Google Scholar 

  • Hosking J.R.M. (1980). Fractional differencing. Biometrika. 68, 165–176

    Article  MathSciNet  Google Scholar 

  • Hosking J.R.M. (1996). Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long memory time series. Journal of Econometrics. 73, 261–284

    Article  MATH  MathSciNet  Google Scholar 

  • Kolmorgorov A.N. (1941). Interpolation und extrapolation von stationaren zufalligen folgen.Bulletin Academy Science U. S. S. R., Mathematics Series. 5, 3–14

    Google Scholar 

  • Levinson N. (1947). The Wiener RMS (root mean square) error criterion in filter design and prediction. Journal of Mathematical Physics. 25, 261–278

    MathSciNet  Google Scholar 

  • Lysne D., Tjøstheim D. (1987). Loss of spectral peaks in autoregressive spectral estimation. Biometrika. 74, 200–206

    Article  MATH  MathSciNet  Google Scholar 

  • Mallows C.L. (1973). Some comments on C p . Technometrics 15, 661–675

    Article  MATH  Google Scholar 

  • Parzen E. (1974). Some recent advances in time series modelling. IEEE Transactions on Automatic Control. AC-19, 723–730

    Article  MATH  MathSciNet  Google Scholar 

  • Paulsen J., Tjøstheim D. (1985). On the estimation of residual variance and order in autoregressive time series. Journal of the Royal Statistical Society. B-47, 216–228

    MATH  Google Scholar 

  • Poskitt D.S. (2000). Strongly consistent determination of cointegrating rank via canonical correlations. Journal of Business and Economic Statistics. 18, 71–90

    Article  MathSciNet  Google Scholar 

  • Schwarz G. (1978). Estimating the dimension of a model. Annals of Statistics. 6, 461–464

    MATH  MathSciNet  Google Scholar 

  • Shibata R. (1980). Asymptotically efficient selection of the order of the model for estimating parameters of a linear process. Annals of Statistics. 8, 147–164

    MATH  MathSciNet  Google Scholar 

  • Szegö, G. (1939). Orthogonal polynomials. American Mathematical Society Colloquium Publication.

  • Tjøstheim D., Paulsen J. (1983). Bias of some commonly-used time series estimators. Biometrika. 70, 389–400

    MathSciNet  Google Scholar 

  • Wand M.P., Jones M.C. (1995). Kernel smoothing. London, Chapman and Hall

    MATH  Google Scholar 

  • Wold H.(1938). The analysis of stationary time series (2nd ed). Uppsala, Almquist and Wicksell

    MATH  Google Scholar 

  • Yule G.U. (1921). On the time correlation problem. Journal of the Royal Statistical Society, 84, 497–510

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Poskitt.

About this article

Cite this article

Poskitt, D.S. Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases. AISM 59, 697–725 (2007). https://doi.org/10.1007/s10463-006-0074-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-006-0074-4

Keywords

Navigation