Skip to main content
Log in

Decompounding random sums: a nonparametric approach

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

A compound distribution is the distribution of a random sum, which consists of a random number N of independent identically distributed summands, independent of N. Buchmann and Grübel (Ann Stat 31:1054–1074, 2003) considered decompounding a compound Poisson distribution, i.e. given observations on a random sum when N has a Poisson distribution, they constructed a nonparametric plug-in estimator of the underlying summand distribution. This approach is extended here to that of general (but known) distributions for N. Asymptotic normality of the proposed estimator is established, and bootstrap methods are used to provide confidence bounds. Finally, practical implementation is discussed, and tested on simulated data. In particular we show how recursion formulae can be inverted for the Panjer class in general, as well as for an example drawn from the Willmot class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asmussen S. (2003). Applied probability and queues (2 edn). Springer, New York

    MATH  Google Scholar 

  • Bingham N.H. and Pitts S.M. (1999a). Nonparametric estimation for the M/G/∞ queue. Annals of the Institute of Statistical Mathematics 51: 71–97

    Article  MATH  MathSciNet  Google Scholar 

  • Bingham N.H. and Pitts S.M. (1999b). Nonparametric inference from M/G/1 busy periods. Communications in Statistics and Stochastic Models 15: 247–272

    Article  MATH  MathSciNet  Google Scholar 

  • Buchmann B. and Grübel R. (2003). Decompounding: An estimation problem for Poisson random sums. Annals of Statistics 31: 1054–1074

    Article  MATH  MathSciNet  Google Scholar 

  • Buchmann B. and Grübel R. (2004). Decompounding Poisson random sums: Recursively truncated estimates in the discrete case. Annals of the Institute of Statistical Mathematics 56: 743–756

    Article  MATH  MathSciNet  Google Scholar 

  • Bultheel A. and Martínez-Sulbaran H. (2006). Recent developments in the theory of the fractional fourier and linear canonical transforms. Bulletin of the Belgian mathematical society—Simon Stevin 13: 971–1005

    MATH  MathSciNet  Google Scholar 

  • Copson E.T. (1935). An introduction to the theory of functions of a complex variable. The Clarendon Press, Oxford

    Google Scholar 

  • Delaporte P. (1959). Quelques problèmes de statistiques mathématiques posés par l’assurance automobile et le bonus pour non sinistre. Bulletin Trimestriel de l’Institut des Actuaires Français 227: 87–102

    Google Scholar 

  • Dickson D.C.M. (2005). Insurance risk and ruin. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Gill R. (1989). Non- and semi-parametric maximum likelihood estimators and the von Mises method (Part I). Scandinavian Journal of Statistics 16: 97–128

    MATH  MathSciNet  Google Scholar 

  • Gorenflo R. and Hofmann B. (1994). On autoconvolution and regularization. Inverse Problems 10: 353–373

    Article  MATH  MathSciNet  Google Scholar 

  • Grandell J. (1997). Mixed poisson processes. Chapman and Hall, London

    MATH  Google Scholar 

  • Grübel R. and Pitts S.M. (1993). Nonparametric estimation in renewal theory I: the empirical renewal function. Annal of Statistics 21: 1431–1451

    Article  MATH  Google Scholar 

  • Hall P. and Park J. (2004). Nonparametric inference about service time distribution from indirect measurements. Journal of the Royal Statistical Society, Series B 66: 861–875

    Article  MATH  MathSciNet  Google Scholar 

  • Hansen M.B. and Pitts S.M. (2006). Nonparametric inference from the M/G/1 workload. Bernoulli 12: 737–759

    Article  MATH  MathSciNet  Google Scholar 

  • Henrici P. (1974). Applied and Computational Complex Analysis, Vol. 1: Power series—integration— conformal mapping—location of zeros. Wiley, New York

    MATH  Google Scholar 

  • Hohn, N., Veitch, D. (2003). Inverting sampled traffic. In Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement, Miami Beach, USA (pp. 222–223). New York: ACM Press.

  • Johnson N.L., Kemp A.W. and Kotz S. (2005). Univariate discrete distributions (3 edn). Wiley, New York

    MATH  Google Scholar 

  • Neyman J. and Scott E.L. (1958). A statistical approach to problems of cosmology. Journal of the Royal Statistical Society, Series B 20: 1–43

    MATH  MathSciNet  Google Scholar 

  • Panjer H.H. (1981). Recursive evaluation of a family of compound distributions. Astin Bulletin 12: 22–26

    MathSciNet  Google Scholar 

  • Pollard D. (1984). Convergence of stochastic processes. Springer, New York

    MATH  Google Scholar 

  • Redheffer R.M. (1962). Reversion of power series. American Mathematical Monthly 69: 423–425

    Article  MATH  MathSciNet  Google Scholar 

  • Ruohonen M. (1988). On a model for the claim number process. Astin Bulletin 18: 57–68

    Article  Google Scholar 

  • Schröter K. (1990). On a family of counting distributions and recursions for related compound distributions. Scandinavian Actuarial Journal 304: 161–175

    Google Scholar 

  • Vaart A.W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Wellner J.A. and Vaart A.W. (1996). Weak convergence and empirical processes. Springer, New York

    MATH  Google Scholar 

  • Gugushvili S., Spreij P. and Es B. (2007). A kernel type nonparametric density estimator for decompounding. Bernoulli 13: 672–694

    Article  MATH  MathSciNet  Google Scholar 

  • Jongbloed G., Es B. and Zuijlen M. (1998). Isotonic inverse estimators for nonparametric deconvolution. Annals of Statistics 26: 2395–2406

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Pitts.

About this article

Cite this article

Bøgsted, M., Pitts, S.M. Decompounding random sums: a nonparametric approach. Ann Inst Stat Math 62, 855–872 (2010). https://doi.org/10.1007/s10463-008-0200-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-008-0200-6

Keywords

Navigation