Skip to main content
Log in

An implanted system for multi-site nerve cuff-based ENG recording using velocity selectivity

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper describes the design of an implantable system for velocity-selective electroneurogram (ENG) recording. The system, which relies on the availability of multielectrode nerve cuffs (MECs) consists of two CMOS ASICs. One ASIC called the electrode unit (EU) is a mixed analogue/digital signal acquisition system which is mounted directly on an MEC in order to optimize the interface between the two. It is linked to the other ASIC by means of a 5-core cable through which it receives power and commands in addition to transmitting data. The second ASIC, called the monitoring unit (MU) manages the interface between the EUs (each MU can control up to three EUs) and an RF transcutaneous link to the external signal processor. The ASICs are fabricated in 0.8 μm CMOS technology. The EUs measure 3 mm × 4 mm each and consume 105 mW (35 mW each), while the MU measures 1.5 mm × 2 mm and consumes 4 mW. The power consumption on the communication channels (including cable losses) between the MU and EUs is 129 mW. A digital communication strategy between the two parts of the implanted system and the external controller is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Brindley, G. S. & Rushton, D. N. (eds.). (1995). Clinical neurology: Neuroprostheses (vol. 14, no. 1). London: Baillieres-Tindall.

    Google Scholar 

  2. Schmidt, R. A., Bruschini, H., & Tanagho, E. A. (1978). Feasibility of inducing micturition through chronic stimulation of sacral roots. Urology, 12, 471–477.

    Article  Google Scholar 

  3. Haugland, M. K., & Hoffer, J. A. (1994). Artifact-free sensory nerve signals obtained from cuff electrodes during functional electrical stimulation of nearby muscles. IEEE Transactions on Rehabilitation Engineering, 2, 37–40.

    Article  Google Scholar 

  4. Haugland, M. K., & Hoffer, J. A. (1994). Slip information obtained from the cutaneous electroneurogram: Application in closed loop control of functional electrical stimulation. IEEE Transactions on Rehabilitation Engineering, 2, 29–36.

    Article  Google Scholar 

  5. Haugland, M. K., Hoffer, J. A., & Sinkjaer, T. (1994). Skin contact force information in sensory nerve signals recorded by implanted cuff electrodes. IEEE Transactions on Rehabilitation Engineering, 2, 18–28.

    Article  Google Scholar 

  6. Haugland, M., Lickel, A., Haase, J., & Sinkjaer, T. (1999). Control of FES thumb force using slip information obtained from the cutaneous electroneurogram in quadriplegic man. IEEE Transactions on Rehabilitation Engineering, 7(2), 215–227

    Article  Google Scholar 

  7. Strange, K. D., & Hoffer, J. A. (1999). Gait phase information provided by sensory nerve activity during walking: Applicability as a state controller feedback for FES. IEEE Transactions on Biomedical Engineering, 46(7), 797–810.

    Article  Google Scholar 

  8. Waters, R. L., McNeal, D. R., Faloon, W., & Clifford, B. (1985). Functional electrical stimulation of the peroneal nerve for hemiplegia: Long term clinical follow-up. The Journal of Bone and Joint Surgery, 67A, 792–793.

    Google Scholar 

  9. Haugland, M. K., & Sinkjaer, T. (1995). Cutaneous whole nerve recordings used for correction of footdrop in hemiplegic man. IEEE Transactions on Rehabilitation Engineering, 3, 307–317.

    Article  Google Scholar 

  10. Steyaert, M., Sansen, W., & Zhongyuan, C. (1987). A Micropower Low-Noise Monolithic Instrumentation Amplifier for Medical Purposes. IEEE Journal of Solid-State Circuits, SC-22(6), 1163–1168.

    Article  Google Scholar 

  11. Martins, R., Selberherr, S., & Vaz, F. A. (1998). A CMOS IC for portable EEG acquisition systems. IEEE Transactions on Instrumentation and Measurement, 47(5), 1191–1196.

    Article  Google Scholar 

  12. Ji, J., & Wise, K. D. (1992). An implantable CMOS circuit interface for multiplexed microelectrode recording arrays. IEEE Journal of Solid-State Circuits, 27(3), 433–443.

    Article  Google Scholar 

  13. Perelman, Y., & Ginosar, R. (2006). An integrated system for multichannel neuronal recording with spike/LFP separation and digital output. Proceedings of the 2nd International IEEE IEMBS Conference on Neural Engineering. Arlington, Virginia.

  14. Rieger, R., Taylor, J., Demosthenous, A., Donaldson, N., & Langlois, P. (2003). Design of a Low-Noise Preamplifier for Nerve Cuff Electrode Recording. IEEE Journal of Solid-State Circuits, 38(8), 1373–1379.

    Article  Google Scholar 

  15. Pflaum, C., Riso, R. R., & Wiesspeiner, G. (1996). Performance of alternative amplifier configurations for tripolar nerve cuff recorded ENG. Proceedings of the IEEE International Conference Engineering and Medcine and Biology Society (EMBS) (vol. 1, pp. 375–376). Amsterdam, Netherlands.

  16. Rushton, W. A. H. (1951). A theory of the effects of fibre size in medullated nerves. Journal of Physiology, 115, 101–122.

    Google Scholar 

  17. Taylor, J., Donaldson, N., & Winter, J. (2004). Multiple-electrode nerve cuffs for low velocity and velocity-selective neural recording. Medical and Biological Engineering and Computing, 42, 634–643.

    Article  Google Scholar 

  18. Stieglitz, T., Beutel, H., Schuettler, M., & Meyer, J. U. (2000). Micromachined Polyimide-Based Devices for Flexible Neural Interfaces. Biomedical Microdevices, 2(4), 283–294.

    Article  Google Scholar 

  19. Donaldson, P. (1983). The Cooper cable: an implantable multiconductor cable for neurological prostheses. Medical and Biological Engineering and Computing, 21, 371–374.

    Article  Google Scholar 

  20. ISO standard, ‘Information technology-Open Systems Interconnection-basic reference model: the basic model’, ISO/IEC 7498–1, 1994.

  21. Jones, A., Uzam, M., & Ajlouni, N. (1996). Design of discrete event control systems for programmable logic controllers using T-Timed Petri Nets. Proceedings of the 1996 IEEE International Symposium on Computer-Aided Control System Design (pp. 212–217). 15–18 September, Dearborn, MI, USA.

  22. Rieger, R., et al. (2006). Very low-noise ENG amplifier system using CMOS technology. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(4), 427–437.

    Article  Google Scholar 

  23. Rieger, R., Pal, D., Taylor, J., Clarke, C., Langlois, P., & Donaldson, N. (2005). 10-Channel very low-noise ENG amplifier system using CMOS technology. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2005) (pp 748–751). May, Kobe, Japan.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher T. Clarke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, C.T., Xu, X., Rieger, R. et al. An implanted system for multi-site nerve cuff-based ENG recording using velocity selectivity. Analog Integr Circ Sig Process 58, 91–104 (2009). https://doi.org/10.1007/s10470-008-9233-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-008-9233-2

Keywords

Navigation