Skip to main content
Log in

Current-controlled current differencing transconductance amplifier and applications in continuous-time signal processing circuits

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This article presents the design for a basic current-mode building block for analogue signal processing, named as Current Controlled Current Differencing Transconductance Amplifier (CCCDTA). Its parasitic resistances at two current input ports can be controlled by an input bias current. As it can be applied in current-mode of all terminals, it is very suitable to use in a current-mode signal processing, which is continually more popular than a voltage one. The proposed element is realized in a bipolar technology and its performance is examined through PSPICE simulations. They display usability of the new active element, where the maximum bandwidth is 65 MHz. The CCCDTA performs low-power consumption and tuning over a wide current range. In addition, some examples as a current-mode universal biquad filter, a current-mode multiplier/divider and floating inductance simulator are included. They occupy only single CCCDTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1990). Analogue IC design: The current-mode approach. London: Peter Peregrinus.

    Google Scholar 

  2. Bhaskar, D. R., Sharma, V. K., Monis, M., & Rizvi, S. M. I. (1999). New current-mode universal biquad filter. Microelectronics Journal, 30(9), 837–839.

    Article  Google Scholar 

  3. Pennisi, S. (2002). A low-voltage design approach for class AB current-mode circuits. In IEEE transactions on circuits and systems II: Analog and digital signal processing, Vol. 49, 4 ed., pp. 273–279.

  4. Palmisano, G., & Pennisi, S. (2000). Dynamic biasing for true low-voltage CMOS class AB current-mode circuits. In IEEE transactions on circuits and systems II: Analog and digital signal processing, Vol. 47, 12 ed., pp. 1569–1575.

  5. Ramirez-Angulo, J., Ducoudray-Acevedo, G., Carvajal, R. G., & Lopez-Martin, A. (2005). Low-voltage high-performance voltage-mode and current-mode WTA circuits based on flipped voltage followers. In IEEE transactions on circuits and systems II: Analog and digital signal processing, Vol. 52, 7 ed., pp. 420–423.

  6. Tu, S.-H., Chang, C.-M., Ross, J. N., & Swamy, M. N. S. (2007). Analytical synthesis of current-mode high-order single-ended-input OTA and equal-capacitor elliptic filter structures with the minimum number of components. In IEEE Transactions on circuits and systems I: Fundamental theory and applications, Vol. 54, 10 ed., pp. 2195–2210.

  7. Minaei, S., Sayin, O. K., & Kuntman, H. (2006). A new CMOS electronically tunable current conveyor and its application to current-mode filters. In IEEE Transactions on circuits and systems I: Fundamental theory and applications, Vol. 53, 7 ed., pp. 1448–1457.

  8. Abuelma’atti, M. T., & Al-Zaher, H. A. (1999). Current-mode sinusoidal oscillators using single FTFN. In IEEE trans. circuits and systems-II: Analog and digital signal processing, Vol. 46, pp. 69–74.

  9. Yuce, E. (2008). Design of a simple current-mode multiplier topology using a single CCCII+. In IEEE transactions on instrumentation and measurement, Vol. 57, 3 ed., pp. 631–637.

  10. Khan, A., Abouel-ela, M., & Al-turaigi, M. A. (1995). Current-mode precision rectification. International Journal of Electronics, 79, 853–859.

    Article  Google Scholar 

  11. Dejhan, K., & Netbut, C. (2007). New simple square-rooting circuits based on translinear current conveyors. International Journal of Electronics, 94, 707–723.

    Article  Google Scholar 

  12. DiClemente, D., & Yuan, F. (2007). Current-mode phase-locked loops- a new architecture. In IEEE transactions on circuits and systems II: Express briefs, analog and digital signal processing, Vol. 54, 4 ed., pp. 303–307.

  13. Biolek, D. (2003). CDTA: Building block for current-mode analog signal processing. In Proceedings of the European conference on circuit theory and design 2003—ECCTD’03 (pp. 397–400), Krakow, Poland.

  14. Biolek, D., & Biolkova, V. (2003). Universal biquads using CDTA elements for cascade filter design. In Proceedings of 13th international multiconference CSCC2003 (pp. 8–12), Corfu, Greece.

  15. Acar, C., & Özoguz, S. (1999). A versatile building block: current differencing buffered amplifier suitable for analog signal processing filters. Microelectronics Journal, 30(2), 157–160.

    Article  Google Scholar 

  16. Keskin, A. Ü., Dalibor, B., Hancioglu, E., & Biolková, V. (2006). Current-mode KHN filter employing current differencing transconductance amplifiers. AEU: International Journal of Electronics and Communications, 60(6), 443–446.

    Article  Google Scholar 

  17. Fabre, A. (1983). “Dual translinear voltage/current convertor”, Electron. Letters. vol, 19, 1030–1031.

    Google Scholar 

  18. Grebene, A. (1984). Bipolar and MOS analog integrated circuit design. New York: John Wiley.

    Google Scholar 

  19. Frey, D. R. (1993). Log-domain filtering: an approach to current-mode filtering. IEE Proceedings Circuits, Devices and Systems, 140(6), 406–416.

    Article  Google Scholar 

  20. Ibrahim, M. A., Minaei, S., & Kuntman, H. A. (2005). A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. AEU: International Journal of Electronics and Communications, 59(5), 311–318.

    Article  Google Scholar 

  21. Hou, C. L., Huang, C. C., Lan, Y. S., Shaw, J. J., & Chang, C. M. (1999). Current-mode and voltage-mode universal biquads using a single current-feedback amplifier. International Journal of Electronics, 86(8), 929–932.

    Article  Google Scholar 

  22. Kaewdang, K., Fongsamut, C., & Surakampontorn, W. (2003). A wide-band current-mode OTA-based analog multiplier-divider. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS’03) (pp. I349–I352), Bangkok, Thailand.

  23. Wilamowski, B. M. (1998). VLSI analog multiplier/divider circuit. In Proceedings of the IEEE International Symposium on Industrial Electronics, Vol. 2, pp. 493–496.

  24. Pena-Finol, J. S., & Connelly, J. A. (2001). Novel lossless floating immittance simulator employing only two FTFNs. Analog Integrated Circuits and Signal Processing, 29(3), 233–235.

    Article  Google Scholar 

  25. Khan, I. A., & Zaidi, M. H. (2003). A novel ideal floating inductor using translinear conveyors. Active and Passive Electronic Components, 26(2), 87–89.

    Article  MathSciNet  Google Scholar 

  26. Kuntmana, H., Gulsoyb, M., & Cicekoglub, O. (2000). Actively simulated grounded lossy inductors using third generation current conveyors. Microelectronics Journal, 31(4), 245–250.

    Article  Google Scholar 

  27. Pal, K. (2004). Floating inductance and FDNR using positive polarity current conveyors. Active and Passive Electronic Components, 27(2), 81–83.

    Article  Google Scholar 

  28. Yuce, E., Minaei, S., & Cicekoglu, O. (2005). A novel grounded inductor realization using a minimum number of active and passive components. ETRI Journal, 27(4), 427–432.

    Article  Google Scholar 

  29. Çam, U., Kaçar, F., Cicekoglu, O., Kuntman, H., & Kuntman, A. (2003). Novel grounded parallel immittance simulator topologies employing single OTRA. AEU: International Journal of Electronics and Communications, 57(4), 287–290.

    Article  Google Scholar 

  30. Minaei, M., Yuce, E., & Cicekoglu, O. (2006). Lossless active floating inductance simulator. In Proceedings of DELTA’06 (pp. 332–335), Malaysia.

  31. Gulsoy, M., & Çcekolu, O. (2005). Lossless and lossy synthetic inductors employing single current differencing buffered amplifier. In IEICE Transactions on communications, Vol. E88-B, 5 ed., pp. 2152–2155.

Download references

Acknowledgments

This work is funded by Graduate College King Mongkut’s University of Technology North Bangkok. The authors would like to thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winai Jaikla.

Appendices

Appendix A

From routine analysis the circuit in Fig. 3, the output current I z can be given by

$$ I_{\text{Z}} = I_{\text{p}} K_{1} + \frac{{I_{\text{B}} }}{{g_{\pi 4} \beta_{4} }}\left( {g_{m6} K_{1} + K_{4} + g_{m20} K_{2} - K_{6} - g_{m5} K_{3} } \right) - \frac{{I_{\text{B}} }}{{g_{\pi 1} \beta_{1} }}\left( {g_{m3} K_{1} + K_{5} + g_{m21} K_{2} - K_{7} - g_{m2} K_{3} } \right) - I_{\text{n}} K_{3} , $$
(39)

where

$$ K_{1} = \frac{{g_{m6} g_{m12} g_{m19} + g_{m3} g_{m13} g_{m18} }}{{g_{m12} g_{m18} (g_{m6} + g_{m3} + g_{\pi 3} + g_{\pi 6} )}}, $$
$$ K_{2} = \frac{{g_{m12} g_{m19} g_{m20} + g_{m13} g_{m18} g_{m21} }}{{g_{m12} g_{m18} (g_{m20} + g_{m21} + g_{\pi 20} + g_{\pi 21} )}}, $$
$$ K_{3} = \frac{{(K_{5} + K_{4} )}}{{g_{m5} + g_{m2} + g_{\pi 2} + g_{\pi 5} }}, $$
$$ K_{4} = \frac{{g_{m5} g_{m19} g_{m17} }}{{g_{m18} (g_{m16} + g_{\pi 17} )}}, $$
$$ K_{5} = \frac{{g_{m2} g_{m11} g_{m13} }}{{g_{m12} (g_{m10} + g_{\pi 11} )}}, $$
$$ K_{6} = \frac{{g_{m19} }}{{g_{m16} }}(g_{m6} + g_{m20} ) $$

and

$$ K_{7} = \frac{{g_{m13} }}{{g_{m12} }}(g_{m3} + g_{m21} ). $$

We can form Eq. 39 as

$$ I_{\text{z}} = \alpha_{\text{p}} I_{\text{p}} - \alpha_{\text{n}} I_{\text{n}} + \varepsilon , $$
(40)

where

$$ \alpha_{\text{p}} = \frac{{g_{m6} g_{m12} g_{m19} + g_{m3} g_{m13} g_{m18} }}{{g_{m12} g_{m18} (g_{m6} + g_{m3} + g_{\pi 3} + g_{\pi 6} )}}, $$
$$ \alpha_{\text{n}} = \frac{{\left( {K_{5} + K_{4} } \right)}}{{g_{m5} + g_{m2} + g_{\pi 2} + g_{\pi 5} }} $$

and \( \varepsilon = \frac{{I_{\text{B}} }}{{g_{\pi 4} \beta_{4} }}\left( {g_{m6} K_{1} + K_{4} + g_{m20} K_{2} - K_{6} - g_{m5} K_{3} } \right) - \frac{{I_{\text{B}} }}{{g_{\pi 1} \beta_{1} }}\left( {g_{m3} K_{1} + K_{5} + g_{m21} K_{2} - K_{7} - g_{m2} K_{3} } \right). \)

If transistors are matched, which are g m10 = g m11, g m1 = g m2 = g m3 = g m4 = g m6 = g m20 = g m21, g m12 = g m13, g m16 = g m17 and g m18 = g m19. The current at Z-terminal can be expressed as

$$ I_{\text{z}} = I_{\text{p}} - I_{\text{n}} . $$
(41)

Equation 41 confirms that the circuit in Fig. 3 can function as a current differencing circuit.

Appendix B

Straightforwardly analyzing the circuit in Fig. 4, the current output can be obtained as

$$ \begin{aligned} I_{{\text{O}}} & = V_{1} {\left[ {\frac{{g_{{m22}} g_{{m25}} }} {{\text{B}}} - \frac{{{\left( {g_{{m22}} + g_{{\pi 22}} } \right)}{\left( {g_{{m22}} g_{{m25}} - g_{{m23}} B} \right)}}} {{{\text{AB}}}}} \right]} - V_{2} {\left[ {\frac{{{\left( {g_{{m23}} + g_{{\pi 23}} } \right)}{\left( {g_{{m22}} g_{{m25}} - g_{{m23}} B} \right)}}} {{{\text{AB}}}} + g_{{m23}} } \right]} \\ & \quad + I_{B} {\left( {\frac{{g_{{m22}} g_{{m25}} }} {{{\text{AB}}}} - \frac{{g_{{m23}} }} {{\text{A}}}} \right)}, \\ \end{aligned} $$
(42)

where A = g m22 + g π22 + g m23 + g π23 and B = g m24 + g π24 + g π25. We can form Eq. 42 as

$$ I_{\text{O}} = \beta_{1} g_{m22} V_{1} - \beta_{2} g_{m23} V_{2} + \varepsilon $$
(43)

where

$$ \beta_{1} = \frac{{g_{m25} }}{\text{B}} - \frac{{\left( {g_{m22} + g_{\pi 22} } \right)\left( {g_{m22} g_{m25} - g_{m23} {\text{B}}} \right)}}{{{\text{AB}}g_{m22} }}, $$
$$ \beta_{2} = \frac{{\left( {g_{m23} + g_{\pi 23} } \right)\left( {g_{m22} g_{m25} - g_{m23} {\text{B}}} \right)}}{{{\text{AB}}g_{m23} }} + 1 $$

and

$$ \varepsilon = I_{\text{B}} \left( {\frac{{g_{m22} g_{m25} }}{\text{AB}} - \frac{{g_{m23} }}{\text{A}}} \right). $$

If transistors are matched, which are g m24 = g m25 and g m22 = g m23 = g m . The output current can be expressed as

$$ I_{\text{O}} = g_{m} \left( {V_{1} - V_{2} } \right). $$
(44)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siripruchyanun, M., Jaikla, W. Current-controlled current differencing transconductance amplifier and applications in continuous-time signal processing circuits. Analog Integr Circ Sig Process 61, 247–257 (2009). https://doi.org/10.1007/s10470-009-9313-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9313-y

Keywords

Navigation