Skip to main content
Log in

Sub 1 V CMOS bandgap reference design techniques: a survey

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a review of constraints, limitation factors and challenges to implement sub 1 V CMOS bandgap voltage reference (BVR) circuits in today’s and future submicron technology. Moreover, we provide insight analysis of BVR circuit architectures a designer can relay upon when building CMOS voltage reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Thimoty, W. (1994). A low noise CMOS voltage reference. PhD. thesis, Georgia Institute of Technology.

  2. Gupta, V., & Ricon-Mora, G. A. (2002). Predicting the effects of error sources in bandgap reference circuits and evaluating their design implications. IEEEs Midwest Symposium on Cricuits and Systems, 3, III-575–III-578.

    Google Scholar 

  3. Gupta, V., & Rincon-Mora, G. A. (2005). Inside the belly of the beast: A map for the wary bandgap reference designer when confronting process variation. Power Management Design Line, Feb, 503–508.

  4. Gupta, V., & Rincon-Mora, G. A. (2005). Predicting and design for impact of process variations and mismatch on the trim range and yield of bandgap references. In IEEE International Symposium on Quality Electronic Design (pp. 503–508). California, Santa Clara.

  5. Mok, P. K. T., & Leung, K. N. (2004). Design considerations of recent advanced low voltage low temperature coefficient CMOS bandgap voltage reference. In IEEE Custom Integrated Circuits Conference, pp. 635–642.

  6. Abesingha, B., et al. (2002). Voltage shift in plastic-packaged bandgap references. IEEE Transactions on Circuits Systems II, 49(10), 681–685.

    Article  Google Scholar 

  7. Jiang, Y., & Lee, E. K. F. (2000). Design of low-voltage bandgap reference using transimpedance amplifier. IEEE Transactions on Circuits Systems II, 47(6), 552–555.

    Article  Google Scholar 

  8. Neuteboom, H., Kup, B. M. J., & Jassens, M. (1997). A DSP-based hearing instrument IC. IEEE Journal of Solid-State Circuits, 32, 1790–1806.

    Article  Google Scholar 

  9. Banba, H., et al. (1999). A CMOS bandgap reference circuit with sub 1-V operation. IEEE Journal of Solid State Circuits, 34(5), 670–674.

    Article  Google Scholar 

  10. Malcovati, P., et al. (2001). Curvature-compensated BiCMOS bandgap with 1-V supply voltage. IEEE Journal of Solid State Circuits, 36, 1076–1081.

    Article  Google Scholar 

  11. Ker, M. D., Chen, J. S., & Chu, C. Y. (2005). A CMOS bandgap reference circuit for sub 1-V operation without using extra low-threshold voltage device. IEICE Transactions on Electronics, E88(11), 2150–2155.

    Article  Google Scholar 

  12. Doyle, J., et al. (2004). A CMOS subbandgap reference circuit with 1-V power supply voltage. IEEE Journal of Solid-State Circuits, 39(1), 252–255.

    Article  Google Scholar 

  13. Giustolisi, G., et al. (2003). A low-voltage low-power voltage reference based on subthreshold MOSFETs. IEEE Journal of Solid-State Circuits, 38(1), 151–154.

    Article  Google Scholar 

  14. Ugajin, M., et al. (2002). A 0.6 V supply, voltage-reference circuit based on threshold-voltage summation architecture in fully depleted CMOS/SOI. IEICE Transactions on Electronics, E85-C(8), 1588–1595.

    Google Scholar 

  15. Watanabe, H., et al. (2003). CMOS voltage reference based on gate work function differences in Poli-Si controlled by conductivity type and impurity concentration. IEEE Journal of Solid-State Circuits, 38(6), 987–994.

    Article  Google Scholar 

  16. Annema, A.-J. (1999). Low-power bandgap references featuring DTMOSTs. IEEE Journal of Solid-State Circuits, 34(7), 949–955.

    Article  Google Scholar 

  17. Fayomi, C. J. B., Sawan, M., & Roberts, G. W. (2004). Reliable circuit techniques for low-voltage analog design in deep submicron standard CMOS: A tutorial. Analog Integrated Circuits and Signal Process, 39, 21–38.

    Article  Google Scholar 

  18. Jiang, Y. & Lee, E. K. F. (2005). A low voltage low 1/f noise CMOS bandgap reference. In IEEE International Symposium on Circuits and systems, Vol. 4, pp. 3877–3880.

  19. Leung, K. N., & Mok, P. K. T. (2002). A sub 1-V 15-ppm/oC CMOS bandgap voltage reference without requiring low threshold voltage device. IEEE Journal of Solid-State Circuits, 37, 526–530.

    Article  Google Scholar 

  20. Ker, M. D., & Chen, J. S. (2006). New curvature-compensation technique for CMOS bandgap reference with sub 1-V operation. IEEE Transactions on Circuits and Systems, 53(8), 667–671.

    Article  Google Scholar 

  21. Boni, A. (2002). Op-amps and startup circuits for CMOS bandgap references with near 1-V supply. IEEE Journal of Solid-State Circuits, 37(10), 1339–1343.

    Article  Google Scholar 

  22. Ytterdal, T. (2003). CMOS bandgap voltage reference circuit for supply voltages down to 0.6 V. IEEE Electronics Letters, 39(20), 1427–1428.

    Article  Google Scholar 

  23. Filanovsky, I. M., & Allam, A. (2001). Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Transactions on Circuits and Systems I, 48(7), 876–884.

    Article  Google Scholar 

  24. Najafizadeh, L., & Filanovsky, I. M. (2004). Towards a sub 1 V CMOS voltage reference. In IEEE International Symposium on Circuits and Systems, pp. I-53–I-56.

  25. Huang, P. H., Lin, H., & Lin, Y. T. (2006). A simple subthreshold CMOS voltage reference circuit with channel length modulation compensation. IEEE Transactions on Circuits and Systems II, 53(53), 882–885.

    Google Scholar 

  26. Pletersek, A. (2005). A compensated bandgap voltage reference with sub 1-V supply voltage. Analog Integrated Circuits and Signal Process, 44(1), 5–15.

    Article  Google Scholar 

  27. Luis, H. C., Ferreira, L. H. C., Pimenta, T. C., & Moren R. L. (2008). A CMOS threshold voltage reference source for very-low-voltage applications. Microelectronics Journal, 39(12), 1867–1873.

    Article  Google Scholar 

  28. Kim, J. W., et al. (2008). Integration of bandgap reference circuits using silicon ICs and germaninum devices. In International Symposium on Quality Electronic Design (ISQED), pp. 429–432.

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC). They also wish to thank Dalton M. Colombo, Ph.D student at Federal University of Rio Grande do Sul (Porto Alegre, Brazil), and Mary-Rose Morrison for their great contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jésus B. Fayomi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fayomi, C.J.B., Wirth, G.I., Achigui, H.F. et al. Sub 1 V CMOS bandgap reference design techniques: a survey. Analog Integr Circ Sig Process 62, 141–157 (2010). https://doi.org/10.1007/s10470-009-9352-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9352-4

Keywords

Navigation