Skip to main content
Log in

Parasitic compensation in CCI-based circuits for reduced power consumption

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the compensation advantage of the first-generation current conveyor (CCI) over the second-generation current conveyor (CCII) in tunable circuits is shown. For this purpose, a new floating frequency dependent negative resistor (FDNR) simulator using three CCIs is presented and employed in a third-order high-pass filter. The compensation feature of the CCI is shown for the proposed high-pass filter. As a second example, the presented compensation method is tested in a second-order band-pass filter constructed with two CCIs. Applying the proposed compensation technique, the CCI-based circuits can operate in lower biasing currents, which result in lower power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1995). Current controlled band pass filter based on translinear conveyors. Electronics Letters, 31(20), 1727–1728.

    Article  Google Scholar 

  2. Awad, I. A., & Soliman, A. M. (1999). New CMOS realization of the CCII. IEEE Trans Circuits and Systems-II, 46(4), 460–463.

    Article  Google Scholar 

  3. Higashimura, M., & Fukui, Y. (1996). Universal filter using plus-type CCIIs. Electronics Letters, 32(9), 810–811.

    Article  Google Scholar 

  4. Horng, J. W., Lay, J. R., Chang, C. W., & Lee, M. H. (1997). High input impedance voltage-mode multifunction filters using plus-type CCIIs. Electronics Letters, 33(6), 472–473.

    Article  Google Scholar 

  5. Senani, R. (1984). Floating ideal FDNR using only two current conveyors. Electronics Letters, 20(5), 12–13.

    Article  Google Scholar 

  6. S. Nandi, P. B. Jana, & R. Nandi (1984) Novel floating ideal tunable FDNR simulation using current conveyors. IEEE Transactions on Circuits and Systems, CAS-31(4), 402–403.

    Google Scholar 

  7. Abuelma’atti, M. T., & Tasadduq, N. A. (1999). Electronically tunable capacitance multiplier and frequency-dependent negative-resistance simulator using the current-controlled current conveyor. Microelectronics Journal, 30, 869–873.

    Article  Google Scholar 

  8. Higashimura, M., & Fukui, Y. (1987). Novel lossless tunable floating FDNR simulation using two current conveyors and an INIC. Electronics Letters, 23(10), 529–531.

    Article  Google Scholar 

  9. Higashimura, M., & Fukui, Y. (1986). Novel lossless tunable floating FDNR simulation using two current conveyors and a buffer. Electronics Letters, 22(18), 938–939.

    Article  Google Scholar 

  10. Nandi, S., Jana, P. B., & Nandi, R. (1983). Floating ideal FDNR using current conveyors. Electronics Letters, 19(7), 251.

    Article  Google Scholar 

  11. Minaei, S., Yuce, E., & Cicekoglu, O. (2006). A versatile active circuit for realising floating inductance, capacitance, FDNR and admittance converter. Analog Integrated Circuits and Signal Processing, 47(2), 199–202.

    Article  Google Scholar 

  12. Yuce, E. (2006). Floating inductance, FDNR and capacitance simulation circuit employing only grounded passive elements. International Journal of Electronics, 93(10), 679–688.

    Article  Google Scholar 

  13. Yuce, E., Cicekoglu, O., & Minaei, S. (2006). Novel floating inductance and FDNR simulators employing CCII+s. Journal of Circuits Systems and Computers, 15(1), 75–81.

    Article  Google Scholar 

  14. Psychalinos, C., Pal, K., & Vlassis, S. (2008). A floating generalized impedance converter with current feedback operational amplifiers. AEU-International Journal of Electronics and Communications, 62(2), 81–85.

    Article  Google Scholar 

  15. Sagbas, M., Ayten, U. E., Sedef, H., & Koksal, M. (2009). Floating immittance function simulator and its applications. Circuits Systems and Signal Processing, 28(1), 55–63.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Minaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metin, B., Minaei, S. Parasitic compensation in CCI-based circuits for reduced power consumption. Analog Integr Circ Sig Process 65, 157–162 (2010). https://doi.org/10.1007/s10470-010-9481-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-010-9481-9

Keywords

Navigation