Skip to main content
Log in

A fully on-chip LDO voltage regulator with 37 dB PSRR at 1 MHz for remotely powered biomedical implants

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This article presents a fully on-chip low-power LDO voltage regulator dedicated to remotely powered wireless cortical implants. This regulator is stable over the full range of alternating load current and provides fast load regulation achieved by applying a time-domain design methodology. Moreover, a new compensation technique is proposed and implemented to improve PSRR beyond the performance levels which can be obtained using the standard cascode compensation technique. Measurement results show that the regulator has a load regulation of 0.175 V/A, a line regulation of 0.024%, and a PSRR of 37 dB at 1 MHz power carrier frequency. The output of the regulator settles within 10-bit accuracy of the nominal voltage (1.8 V) within 1.6 μs, at full load transition. The total ground current including the bandgap reference circuit is 28 μA and the active chip area measures 290 μm × 360 μm in a 0.18 μm CMOS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wise, K. D., Anderson, D. J., Hetke, J. F., Kipke, D. R., & Najafi, K. (2004). Wireless implantable microsystems: High-density electronic interfaces to the nervous system. Proceedings of the IEEE, 92(1), 76–97.

    Article  Google Scholar 

  2. Sawan, M., Hu, Y., & Coulombe, J. (2005). Wireless smart implants dedicated to multichannel monitoring and microstimulation. IEEE Circuits and Systems Magazine, 5(1), 21–39.

    Article  Google Scholar 

  3. Harrison, R. R., Watkins, P. T., Kier, R. J., Lovejoy, R. O., Black, D. J., Greger, B., & Solzbacher, F. (2007). A low-power integrated circuits for a wireless 100-electrode neural recording system. IEEE Journal of Solid-State Circuits, 42(1), 123–133.

    Article  Google Scholar 

  4. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. In IEEE Standard, C95.1-2005 (2006).

  5. Silay, K. M., Dehollain, C., & Declercq, M. (2008). Numerical analysis of temperature elevation in the head due to power dissipation in a cortical implant. In Proceedings of the IEEE EMBC’08 (pp. 951–956) August 2008.

  6. Vaillancourt, P., Djemouai, A., Harvey, J. F., & Sawan, M. (1997) EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant. In Proceedings of the IEEE EMBC’97 (pp. 2499–2502) November 1997.

  7. Silay, K. M., Dehollain, C., & Declercq, M. (2008). Orthogonally oriented coils for minimization of cross-coupling in cortical implants. in Proceedings of the IEEE BioCAS’08 (pp. 109–112) November 2008.

  8. Silay, K. M., Dondi, D., Larcher, L., Declercq, M., Benini, L., Leblebici, Y., & Dehollain, C. (2009). Load optimization of an inductive power link for remote powering of biomedical implants. In Proceedings of the IEEE ISCAS’09 (pp. 533–536) May 2009.

  9. Silay, K. M., Dehollain, C., & Declercq, M. (2010). Inductive power link for a wireless cortical implant with biocompatible packaging. In IEEE Sensors’10, November 2010.

  10. Crepaldi, P. C., Pimenta, T. C., Moreno, R. L., & Rodriguez, E. C. (2010). A linear voltage regulator for an implantable device monitoring system. Analog Integrated Circuits and Signal Processing, 65(1), 131–140.

    Article  Google Scholar 

  11. Hu, Y., Sawan M., & El-Gamal, M. N. (2005). An integrated power recovery module dedicated to implantable electronic devices. Analog Integrated Circuits and Signal Processing, 43(2), 171–181.

    Article  Google Scholar 

  12. Rincon-Mora, G. A., Allen, P. E. (1998). A low-voltage, low quiescent current, low drop-out regulator. IEEE Journal of Solid-State Circuits, 33(1), 36–44.

    Article  Google Scholar 

  13. Oh, W., & Bakkaloglu, B. (2007). A CMOS low-dropout regulator with current-mode feedback buffer amplifier. IEEE Transactions on Circuits and Systems II, 54(10), 922–926.

    Article  Google Scholar 

  14. Leung, K. N., & Mok, P. K. T. (2003). A capacitor-free CMOS low-dropout regulator with damping-factor control frequency compensation. IEEE Journal of Solid-State Circuits, 38(10), 1691–1702.

    Article  Google Scholar 

  15. Milliken, R. J., Martinez, J. S., & Sinencio, E. S. (2007). Full on-chip CMOS low-dropout voltage regulator. IEEE Transactions on Circuits and Systems I, 54(9), 1879–1890.

    Article  Google Scholar 

  16. Balachandran, G. K., & Barnett, R. E. (2006). A 110 nA voltage regulator system with dynamic bandwidth boosting for RFID systems. IEEE Journal of Solid-State Circuits, 41(9), 2019–2028.

    Article  Google Scholar 

  17. Ahuja, B. K. (1983). An improved frequency compensation technique for CMOS operational amplifiers. IEEE Journal of Solid-State Circuits, 18(6), 629–633.

    Article  MathSciNet  Google Scholar 

  18. Feldman, A. R. (1997). High-speed, low-power, sigma-delta modulators for RF baseband channel applications. PhD Thesis, University of California at Berkeley, September 1997.

  19. Banba, H., Shiga, H., Umezawa, A., Miyaba, T., Tanzawa, T., Atsumi, S., & Sakui, K. (1999). A CMOS bandgap reference circuit with sub-1-V operation. IEEE Journal of Solid-State Circuits, 34(5), 670–674.

    Article  Google Scholar 

  20. Majidzadeh, V., Schmid, A., & Leblebici, Y. (2009). A fully on-chip LDO voltage regulator for remotely powered cortical implants. In Proceedings of European solid-state circuits conference ESSCIRC’09’ (pp. 424–427) September 2009.

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Swiss National Science Foundation (SNSF), under projects number 200021-113883 and 200020-122082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Majidzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majidzadeh, V., Silay, K.M., Schmid, A. et al. A fully on-chip LDO voltage regulator with 37 dB PSRR at 1 MHz for remotely powered biomedical implants. Analog Integr Circ Sig Process 67, 157–168 (2011). https://doi.org/10.1007/s10470-010-9556-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-010-9556-7

Keywords

Navigation