Skip to main content
Log in

Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This article presents the new current-mode counterclockwise (CCW) and clockwise (CW) Schmitt triggers based on multiple-output current controlled current differencing transconductance amplifier (MO-CCCDTA). The circuit descriptions are very simple, each construction consists of only single MO-CCCDTA, without any external passive element. The hysteresis and amplitude of the output current of each Schmitt trigger can be tuned independently/electronically by input bias currents. In addition, the output signals are independent of the thermal voltage (VT). The applications as a relaxation oscillator, triangular/square wave generator, pulse width modulation and monostable multivibrator are given here to display the usefulnesses of the presented Schmitt triggers. The PSpice simulation and experimental results are depicted, and agree well with the theoretical anticipation. The maximum power consumptions of CCW and CW Schmitt triggers are approximately 235 and 191 μW, respectively, at ±1.5 V supply voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45

Similar content being viewed by others

References

  1. Schmitt, O. H. (1938). A thermionic trigger. Journal of Physics E: Scientific Instruments, 15, 24–26.

    Article  Google Scholar 

  2. Wang, C. S., Yuan, S. Y., & Kuo, S. Y. (1997). Full-swing BiCMOS Schmitt trigger. IEE Proceedings Circuits Devices and Systems, 144, 303–308.

    Article  Google Scholar 

  3. Zhige, Z., Xuecheng, Z., Xiaowu, D., & Jianming, L. (2008). Novel Schmitt trigger with wide temperature range. Wuhan University Journal of Natural Sciences, 13, 191–194.

    Article  Google Scholar 

  4. Pal, D., Srinivasulu, A., Demonsthenous, A., Pal, B. B., & Das, B. N. (2009). Current conveyor-based square/triangular waveform generators with improved linearity. IEEE Transactions on Instrumentation and Measurement, 58(7), 2174–2180.

    Article  Google Scholar 

  5. Siripruchyanun, M., & Wardkein, P. (2001). Temperature-insensitive and electronically adjustable square/triangular wave generation based on novel Schmitt trigger oscillator. In Proceedings of ISIC2001 9th international symposium on integrated circuits, devices and systems (pp. 219–222).

  6. Haque, A. S., Hossain, M. M., Davis, W. A., Russell, H. T., & Carter, R. L. (2008). Design of sinusoidal, triangular, and square wave generator using current feedback operational amplifier (CFOA). In 2008 IEEE region 5 conference (pp. 1–5).

  7. Hou, C. L., Chien, H. C., & Lo, Y. K. (2005). Square wave generators employing OTRAs. In IEE proceedings circuits, devices and systems (pp. 718–722).

  8. Almashary, B., & Alhokail, H. (2000). Current-mode triangular wave generator using CCIIs. Microelectronics Journal, 31, 239–243.

    Article  Google Scholar 

  9. Hung, W.-S., Kim, H., Cha, H.-W., & Kim, H.-J. (2005). Triangular/square-wave generator with independently controllable frequency and amplitude. IEEE Transactions on Instrumentation and Measurement, 54(1), 105–109.

    Article  Google Scholar 

  10. Park, J. H., & Ch, B. H. (2006). Small signal modeling of hysteretic current mode control using the PWM switch model. In COMPEL ‘06. IEEE workshops on computers in power electronics (pp. 225–230).

  11. Ojo, O., Dong, G., & Wu, Z. (2006). Pulse-width modulation for five-phase converters based on device turn-on times industry. In 41st IAS annual meeting applications conference (Vol. 2, pp. 627–634).

  12. Kim, H., Kim, H. J., & Chung, W. S. (2007). Pulse width modulation circuits using CMOS OTAs. IEEE Transactions on Circuits and Systems I, 54, 1869–1878.

    Article  Google Scholar 

  13. Siripruchyannun, M., & Wardkein, P. (2003). A fully independently adjustable, integrable simple current controlled oscillator and derivative PWM signal generator. The IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E86-A, 3119–3126.

    Google Scholar 

  14. Chung, W.-S., Cha, H.-W., & Kim, H.-J. (2002). Current-controllable monostable multivibrator using OTAs. IEEE Transactions on Circuits and Systems I, 49, 703–705.

    Article  Google Scholar 

  15. Lo, Y.-K., & Chien, H.-C. (2006). Current-mode monostable multivibrators using OTRAs. IEEE Transactions on Circuits and Systems II: Express Briefs, 53, 1274–1278.

    Article  Google Scholar 

  16. Tuwanut, P., Koseeyaporn, J., & Wardkein, P. (2005). A novel monostable multivibrator circuit. In TENCON 2005 (pp. 1–4).

  17. Lo, Y.-K., & Chien, H.-C. (2007). Single OTRA-based current-mode monostable multivibrator with two triggering modes and a reduced recovery time. IET Circuits, Devices & Systems, 1, 257–261.

    Article  Google Scholar 

  18. Pedroni, V. A. (2005). Low-voltage high-speed Schmitt trigger and compact window comparator. Electronics Letters, 41, 1213–1214.

    Article  Google Scholar 

  19. Guoqiang, H. (2005). Theory of current transmission switches and its application to design of a novel current-mode CMOS ternary Schmitt trigger. Electronics Letters, 1, 295–299.

    Google Scholar 

  20. Yuana, F. (2010). High-speed differential CMOS Schmitt trigger with regenerative current feedback and adjustable hysteresis. Analog Integrated Circuits and Signal Processing, 63(1), 121–127.

    Article  Google Scholar 

  21. Cornmercon, J.-C., & Badard, R. (2002). Schmitt trigger oscillator and its synchronisation by an external square oscillator. IEE Proceedings Circuits, Devices and Systems, 149, 221–226.

    Article  Google Scholar 

  22. Kim, K., Cha, H. W., & Chung, W. S. (1997). OTA-R Schmitt trigger with independently controllable threshold and output voltage levels. Electronics Letters, 33, 1103–1105.

    Article  Google Scholar 

  23. Del, S. R., Marcellis, A. D., Ferri, G., & Stornelli, V. (2007). Low voltage integrated astable multivibrator based on a single CCII. In Microelectronics and electronics conference (pp. 177–180).

  24. Diutaldo, G., Palumbo, G., & Pennisi, S. (1995). A Schmitt trigger by means of a CCII+. International Journal of Circuit Theory and Applications, 23(2), 161–165.

    Article  Google Scholar 

  25. Lo, Y. K., Chien, H. C., & Chiu, H. J. (2008). Switch-controllable OTRA-based bistable multivibrators. IET Circuits, Devices & Systems, 2, 373–382.

    Article  Google Scholar 

  26. Papazoglu, C. A., & Karybakas, C. A. (1999). Electronically tunable floating CMOS resistor independent of the MOS parameters and temperature. In Proceedings of ICECS ‘99 the 6th IEEE international conference on electronics, circuits and systems (Vol. 1, pp. 311–314).

  27. Toumazou, C., Lidegy, F. J., & Haigh, D. (1990). Analog IC design: The current-mode approach. Exeter: Peter Peregrinus.

    Google Scholar 

  28. Schmid, H. (2002). Why the terms ‘current mode’ and ‘voltage mode’ neither divide nor qualify circuits. In IEEE ISCAS 2002 (pp. II-29–II-32).

  29. Khucharoensin, S., & Kasemsuwan, V. (2003). High performance CMOS current-mode precision full-wave rectifier. In IEEE ISCAS 2003 (pp. I-41–I-44).

  30. Bhaskar, D. R., Sharma, V. K., Monis, M., & Rizvi, S. M. I. (1999). New current-mode universal biquad filter. Microelectronics Journal, 30, 837–839.

    Article  Google Scholar 

  31. Lo, Y.-K., Chien, H.-C., & Chiu, H.-J. (2009). Current-input OTRA Schmitt trigger with dual hysteresis modes. International Journal of Circuit Theory and Applications, 38(7), 739–746.

    Google Scholar 

  32. Siripruchyanun, M. (2008). Current-controlled CCTA-based novel current-mode Schmitt trigger and its application. In The 2008 international symposium on communications and information technologies (ISCIT2008) (pp. 416–421).

  33. Silapan, P., & Siripruchyanun, M. (2009). A simple current-mode Schmitt trigger employing only single MO-CTTA. In The proceedings of the 2009 6th international conference on electrical engineering/electronics, computer, telecommunications, and information technology (ECTI-CON 2009) (pp. 556–559).

  34. Biolek, D. (2003). CDTA—building block for current-mode analog signal processing. In Proceedings of the European conference on circuit theory and design 2003ECCTD’03 (pp. 397–400).

  35. Siripruchyanun, M., & Jaikla, W. (2007). Realization of current controlled current differencing transconductance amplifier (CCCDTA) and its applications. The ECTI Transactions on Electrical Engineering, Electronics, and Communications (ECTI-EEC), 5(1), 41–50.

    Google Scholar 

  36. Biolek, D., & Biolkova, V. (2006). Current-mode CDTA-based comparators. In The 13th electronic devices and systems 2006 IMAPS CS/SK international conference, EDS (pp. 6–10).

  37. Silapan, P., & Siripruchyanun, M. (2006). A current-mode Schmitt trigger with independently current-controllability of hysteresis and output magnitude and application. Journal of King Mongkut’s University of Technology North Bangkok, 3, 30–38 (in Thai).

    Google Scholar 

  38. Frey, D. R. (1993). Log-domain filtering: An approach to current-mode filtering. In IEE Proceedings Circuits, Devices & Systems (Vol. 140, pp. 406–416).

Download references

Acknowledgment

This work was granted by the Commission on Higher Education granting Mr. Phamorn Silapan supported for the Strategic scholarships fellowship frontier research network from the Commission on Higher Education of Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montree Siripruchyanun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silapan, P., Siripruchyanun, M. Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integr Circ Sig Process 68, 111–128 (2011). https://doi.org/10.1007/s10470-010-9593-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-010-9593-2

Keywords

Navigation