Skip to main content
Log in

Linearity improvement of source degenerated transconductance amplifiers

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Mobility degradation is predominant in submicron CMOS technology. The effect of this mobility reduction in a linear operational transconductance amplifier (OTA) with signal attenuation and source degeneration is examined in this study. Theoretical analysis shows that the cubic non-linearity in the attenuator helps to improve the linearity of the source degenerated transconductor by partial cancellation of the harmonic distortion component. Such a linear transconductor and a third order low pass filter based on this linear OTA are fabricated in UMC 180 nm CMOS process technology. Experimental results show that third order intermodulation distortion of the linear OTA is less than −60 dB for 500 mVpp differential input signal while for 2 % transconductance variation the linear range is about 1.2 Vpp. The linear transconductor consumes only 0.45 mW of power with 1.8 V supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Voorman, H., Veenstra, H. (2000). Tunable high-frequency Gm-C Filters. IEEE Journal of Solid-State Circuits 35(8), 1097–1108.

    Article  Google Scholar 

  2. Kar, S., Sen, S. (2011). Tunable square-wave generator for integrated sensor applications. IEEE Transactions on Instrumentation and Measurement 60(10), 3369–3375.

    Article  Google Scholar 

  3. Tsividis Y., Czarnul Z., Fang S. C. (1986). MOS transconductors and integrators with high linearity. Electronic Letters, 22, (5).

  4. Nedungadi, A., Viswanathan, T. R. (1984). Design of linear CMOS transconductance elements. IEEE Transactions on Circuits and Systems CAS-31(10):891–894.

    Article  Google Scholar 

  5. Chen, J., Sanchez-Sinencio, E., Silva-Martinez, J. (2006). Frequency dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters. IEEE Transactions on Circuits and Systems-I: Regular Papers 53(3), 499–510.

    Article  Google Scholar 

  6. Silva-Martinez, J., Stayert, M. S. J., Sansen, W. M. C. (1991). A large-signal very low-distortion transconductor for high frequency continuous-time filters. IEEE Journal of Solid State Circuits 26, 946–955.

    Article  Google Scholar 

  7. Lewinsky, A., Silva-Martinez, J. (2004). OTA linearity enhancement technique for high frequency applications with IM3 below −65 dB. IEEE Transactions on Circuits and Systems-II: Express Briefs 51(10), 542–548.

    Article  Google Scholar 

  8. El mourabit, A., Sbaa, M. H., Alaoui-Ismaili, Z., Lahjomri, F. (2007). “A CMOS transconductor with high linear range,” IEEE International Conference on Electronics, Circuits and Systems,ICECS’07, pp. 1131–1134.

  9. Lujan-Martinez, C., Carvajal, R. G., Galan, J., Torralba, A., Ramirez-Angulo, J., Lopez-Martin, A. (2008) A tunable pseudo-differential OTA with −78 dB THD consuming 1.25 mW. IEEE Transactions on Circuits and Systems-II: Express Briefs 55(6), 527–531.

    Article  Google Scholar 

  10. Lujan-Martinez, C., Carvajal, R. G., Torralba, A., Ramirez-Angulo, J. (2008). A −72 dB @ 2 MHz IM3 CMOS tunable pseudo-differential transconductor. IEEE International Symposium on Circuits and Systems, ISCAS’08, 73–76.

  11. Mohieldin, A. N., Sanchez-Sinencio, E., Silva-Martinez, J. (2003). A fully balanced pseudo-differential OTA with common-mode feedforward and inherent common-mode feedback detector. IEEE Journal of Solid-State Circuits 38(4), 663–668.

    Article  Google Scholar 

  12. Kuo, Ko-Chi, Leuciuc, A. (2001). Linear MOS transconductor using source degeneration and adaptive biasing. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing 48(10), 937–943.

    Article  Google Scholar 

  13. Ouzounov, S., Roza, Engel, Hegt, Hans, Weide, G.v.d., van Roermund, A. (2007) Design of MOS transconductors with low noise and low harmonic distortion for minimum current consumption. Integration, the VLSI journal 40, 365–379.

    Article  Google Scholar 

  14. Kar S., Sen S. (2011). A highly linear CMOS transconductance amplifier in 180 nm process technology. Analog Integrated Circuits and Signal Processing, doi:10.1007/s10470-011-9796-1.

  15. Sanchez-Sinencio, E. (2000). Operational transconductance amplifiers (OTAs): A tutorial. Analog and Mixed Signal Center, TAMU.

  16. Razavi, B. (2005). Design of analog CMOS integrated circuits. Tata McGraw-Hill, New Delhi.

    Google Scholar 

  17. Jimenez-Fuentes, M., Carvajal, R. G., Acosta, L., Rubia-Macros, C., Lopez-Martin, A., Ramirez-Angulo, J. (2009). A tunable highly linear transconductor with 80 dB of SFDR. Integration, the VLSI journal 42, 277–285.

    Article  Google Scholar 

  18. Tsividis, Y. (1987). Operation and Modelling of the MOS Transistor. New York: McGraw-Hill Book Company.

    Google Scholar 

  19. Chan, P. K., Wilson, G. (1992). Mobility degradation effects in CMOS differential pair transconductors. Analog Integrated Circuits and Signal Processing. 2(1), 27–31.

    Article  Google Scholar 

  20. Mobarak, M., Onabajo, M., Silva-Martinez, J., Sanchez-Sinencio, E. (2010). Attenuation-predistortion linearization of CMOS OTAs with digital correction of process variations in OTA-C filter applications. IEEE Journal of Solid-State Circuits 45(2), 351–367.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the financial support from Department of Information Technology (DIT), Government of India for fabrication of the chip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sougata Kumar Kar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, S.K., Sen, S. Linearity improvement of source degenerated transconductance amplifiers. Analog Integr Circ Sig Process 74, 399–407 (2013). https://doi.org/10.1007/s10470-012-9948-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-012-9948-y

Keywords

Navigation