Skip to main content
Log in

Design and characterization of a current sensing platform for silicon-based nanopores with integrated tunneling nanoelectrodes

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Solid-state nanopores have been gaining popularity in nano-biotechnology for single molecule detection, in particular for label-free high-throughput DNA sequencing. In order to address the improvement of the resolution/speed trade-off critical in this application, here we present a new two-channel current amplifier tailored for solid-state nanopore devices with integrated tunneling electrodes. The simultaneous detection of ion and tunneling currents provides enhanced molecule tracking capability. We describe the system design starting from a detailed noise analysis and device modeling, highlighting the detrimental role of the conductive silicon substrate and of all the stray capacitive couplings between the electrodes. Given the high input capacitance (0.1–1 nF), the input voltage noise has been carefully minimized choosing a discrete couple of matched low-noise JFETs as input stage, thus achieving an equivalent input noise of 1.5 nV/√Hz (corresponding to a current noise floor of 15 fA/√Hz at 10 kHz). Low-noise performance (11 pA rms noise integrated over a 75 kHz bandwidth) is preserved at a wide bandwidth (300 kHz) and high gain (100 MΩ) thanks to the adoption of an improved integrator/differentiator cascade topology. Furthermore, along with biasing networks and selectable low-pass filters, an AC-coupled channel providing additional gain has been introduced in order to “zoom” in the current signature during pore blockade events. Together with an experimental characterization of the system (and comparison with the noise performance of other instruments), the platform is validated by demonstrating the detection of λ-DNA with 20 nm pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Martin, C. R., & Siwy, Z. S. (2007). Learning nature’s way: Biosensing with synthetic nanopores. Science, 317, 331–332.

    Article  Google Scholar 

  2. Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2, 209–215.

    Article  Google Scholar 

  3. Zhang, B., Galusha, G., Shiozawa, P. G., Wang, G., Bergren, A. J., Johns, R. M., et al. (2007). A bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. Analytical Chemistry, 79, 4778–4787.

    Article  Google Scholar 

  4. DeBlois, R. W., & Bean, C. P. (1970). Counting and sizing of submicron particles by the resistive pulse technique. Review of Scientific Instruments, 41(7), 909–915.

    Article  Google Scholar 

  5. Fraikin, J., Teesalu, T., McKenney, C. M., Ruoslaht, E., & Cleland, A. N. (2011). A high-throughput label-free nanoparticle analyser. Nature Nanotechnology, 6, 308–313.

    Article  Google Scholar 

  6. Venkatesan, B. M., & Bashir, R. (2011). Nanopore sensors for nucleic acid analysis. Nature Nanotechnology, 6, 615–624.

    Article  Google Scholar 

  7. Wanunu, M. (2012). Nanopores: A journey towards DNA sequencing. Physics of Life Reviews, 9(2), 125–158.

    Article  Google Scholar 

  8. Peng, H., & Ling, X. S. (2009). Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology, 20, 185101–185108.

    Article  Google Scholar 

  9. Chen, Z., et al. (2010). DNA translocation through an array of kinked nanopores. Nature Materials, 9, 667–675.

    Article  Google Scholar 

  10. Cherf, G. M., Lieberman, K. R., Rashid, H., Lam, C. E., Karplus, K., & Akeson, M. (2012). Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nature Biotechnology, 30, 344–348.

    Article  Google Scholar 

  11. Albrecht, T. (2012). Electrochemical tunneling sensors and their potential application. Nature Communications, 3(829), 1–9.

    MathSciNet  Google Scholar 

  12. Huang, S., He, J., Chang, S., Zhang, P., Liang, F., Li, S., et al. (2010). Identifying single bases in a DNA oligomer with electron tunnelling. Nature Nanotechnology, 5, 868–887.

    Article  Google Scholar 

  13. Ivanov, A. P., Instuli, E., McGilvery, C. M., Baldwin, G., McComb, D. W., Albrecht, T., et al. (2011). DNA tunneling detector embedded in a nanopore. Nano Letters, 11, 279–285.

    Article  Google Scholar 

  14. Smeets, R. M., Keyser, U. F., Dekker, N. H., & Dekker, C. (2008). Noise in solid-state nanopores. PNAS, 105(2), 417–421.

    Article  Google Scholar 

  15. Dimitrov, V., Mirsaidov, U., Wang, D., Sorsch, T., Mansfield, W., Miner, J., et al. (2010). Nanopores in solid-state membranes engineered for single molecule detection. Nanotechnology, 21, 065502–065511.

    Article  Google Scholar 

  16. Carminati, M., Vergani, M., Ferrari, G., Caranzi, L., Caironi, M., & Sampietro, M. (2012). Accuracy and resolution limits in quartz and silicon substrates with microelectrodes for electrochemical biosensors. Sensors and Actuators B, 172, 168–175.

    Article  Google Scholar 

  17. Timp, W., Mirsaidov, U., Wang, D., Comer, J., Aksimentiev, A., & Timp, G. (2010). Nanopore sequencing: Electrical measurements of the code of life. IEEE Transactions on Nanotechnology, 9(3), 281–294.

    Article  Google Scholar 

  18. Meller, A., Nivon, L., & Branton, D. (2001). Voltage-driven DNA translocations through a nanopore. Physical Review Letters, 86, 3435–3438.

    Article  Google Scholar 

  19. Crescentini, M., Bennati, M., Carminati, M., & Tartagni, M. (2013). Noise limits of CMOS current interfaces for biosensors: A review. IEEE Trans. Biomedical Circuits and Systems (in press).

  20. Carminati, M., Ferrari, G., Bianchi, D., & Sampietro, M. (2013). Femtoampere integrated current preamplifier for low noise and wide bandwidth electrochemistry with nanoelectrodes. Electrochimica Acta (in press).

  21. Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M., & Shepard, K. L. (2012). Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nature Methods, 9, 487–492.

    Article  Google Scholar 

  22. Ciofi, C., Crupi, F., Pace, C., Scandurra, G., & Patanè, M. (2007). A new circuit topology for the realization of very low-noise wide-bandwidth transimpedance amplifier. IEEE Transactions on Instrumentation and Measurement, 56(3), 1626–1631.

    Article  Google Scholar 

  23. Vergani, M., et al. (2012). Multichannel bipotentiostat integrated with a microfluidic platform for electrochemical real-time monitoring of cell cultures. IEEE Transaction on Biomedical Circuits and Systems, 6(5), 498–507.

    Article  Google Scholar 

  24. Ayub, M., Ivanov, A., Hong, J., Kuhn, P., Instuli, E., Edel, J. B., et al. (2010). Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing. Journal of Physics, 22, 8–454128.

    Google Scholar 

  25. Ferrari, G., Farina, M., Guagliardo, F., Carminati, M., & Sampietro, M. (2009). Ultra low noise CMOS current preamplifier from DC to 1 MHz. Electronics Letters, 45, 1278–1280.

    Article  Google Scholar 

  26. Ferrari, G., Gozzini, F., Molari, A., & Sampietro, M. (2009). Transimpedance amplifier for high sensitivity current measurements on nanodevices. IEEE Journal of Solid-State Circuits, 44, 1609–1616.

    Article  Google Scholar 

Download references

Acknowledgments

Fondazione CARIPLO and The Royal Society are gratefully acknowledged for partial financial support. Fatma Dogan and Thomas Gibb are also thanked for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Carminati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carminati, M., Ferrari, G., Ivanov, A.P. et al. Design and characterization of a current sensing platform for silicon-based nanopores with integrated tunneling nanoelectrodes. Analog Integr Circ Sig Process 77, 333–343 (2013). https://doi.org/10.1007/s10470-013-0193-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0193-9

Keywords

Navigation