Skip to main content
Log in

Fault diagnosis of analog circuit based on a second map SVDD

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

To improve the diagnosis accuracy of analog circuit, this paper presents a second map support vector data description (SM-SVDD) method, which uses an anomalous and close surface instead of a hypesphere to describe the target data. The fault classifier is constructed by a SM SVDD algorithm to realize analog circuit fault diagnosis. Experimental results on two typical circuits confirm that the proposed method is effective in analog circuit fault diagnosis with good accuracy, and the performance surpasses other intelligent diagnosis methods, such as back propagation neural network, support vector machine and the normal SVDD. The developed method can be applied to other multi-classifier in electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sarathi Vasan, A. S., Bing, L., & Pecht, M. (2013). Diagnostics and prognostics method for analog electronic circuits. IEEE Transactions on Industrial Electronics, 60(11), 5277–5291.

    Article  Google Scholar 

  2. Luo, H., Wang, Y., & Cui, J. (2011). A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor. Expert Systems with Applications, 38(8), 10554–10561.

    Article  Google Scholar 

  3. Zhang, C., He, Y., Yuan, L., et al. (2014). A novel approach for analog circuit fault prognostics based on improved RVM. Journal of Electronic Testing, 30(3), 343–356.

    Article  Google Scholar 

  4. Jahangiri, M., & Razaghian, F. (2014). Fault detection in analogue circuits using hybrid evolutionary algorithm and neural network. Analog Integrated Circuits and Signal Processing, 80(3SI), 551–556.

    Article  Google Scholar 

  5. Xiao, Y. Q., & Feng, L. G. (2012). A novel neural-network approach of analog fault diagnosis based on kernel discriminant analysis and particle swarm optimization. Applied Soft Computing, 12(2), 904–920.

    Article  MathSciNet  Google Scholar 

  6. Tan, Y., He, Y., Cui, C., & Qiu, G. (2008). A novel method for analog fault diagnosis based on neural networks and genetic algorithms. IEEE Transactions on Instrumentation and Measurement, 57(11), 2631–2639.

    Article  Google Scholar 

  7. Stopjaková, V., Malošek, P., Mičušík, D., Matej, M., & Margala, M. (2004). Classification of defective analog integrated circuits using artificial neural networks. Journal of Electronic Testing, 20(1), 25–27.

    Article  Google Scholar 

  8. Long, B., Xian, W. M., Li, M., et al. (2014). Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance. Neurocomputing, 133(10), 237–248.

    Article  Google Scholar 

  9. Zhang, Z., Duan, Z. M., Long, Y., et al. (2014). A new swarm-SVM-based fault diagnosis approach for switched current circuit by using kurtosis and entropy as a preprocessor. Analog Integrated Circuits and Signal Processing, 81(1SI), 289–297.

    Article  Google Scholar 

  10. Ni, J., Zhang, C., & Yang, S. X. (2011). An adaptive approach based on KPCA and SVM for real-time fault diagnosis of HVCBs. IEEE Transactions on Power Delivery, 26(3), 1960–1971.

    Article  Google Scholar 

  11. Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.

    MATH  Google Scholar 

  12. Tax, D. M. J., & Duin, R. P. W. (2004). Support vector data description. Machine Learning, 54(1), 45–66.

    Article  MATH  Google Scholar 

  13. Sakla, W., Chan, A., Ji, J., & Sakla, A. (2011). An SVDD-based algorithm for target detection in hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 8(2), 384–388.

    Article  Google Scholar 

  14. Ben Khediri, I., Weihs, C., & Limam, M. (2012). Kernel k-means clustering based local support vector domain description fault detection of multimodal processes. Expert Systems with Applications, 39(2), 2166–2171.

    Article  Google Scholar 

  15. Guo, S. M., Chen, L. C., & Tsai, J. (2009). A boundary method for outlier detection based on support vector domain description. Pattern Recognition, 42(1), 77–83.

    Article  MATH  Google Scholar 

  16. Zhao, Y., Wang, S. W., & Xiao, F. (2013). Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD). Applied Energy, 112(SI), 1041–1048.

    Article  Google Scholar 

  17. Zhang, Y., Liu, X. D., & Xie, F. D. (2009). Fault classifier of rotating machinery based on weighted support vector data description. Expert Systems with Applications, 36(4), 7928–7932.

    Article  Google Scholar 

  18. Lee, K., Kim, D. W., Lee, K. H., et al. (2007). Density-induced support vector data description. IEEE Transaction on Neural Networks, 18(1), 284–289.

    Article  Google Scholar 

  19. Liu, S. Y., Liang, J. J., Wu, D., et al. (2009). Confidence support vector domain description. Journal of Systems Engineering and Electronics, 20(4), 852–857.

    Google Scholar 

  20. Sjostrand, K., Hansen, M. S., Larsson, H. B., et al. (2007). A path algorithm for the support vector domain description and its application to medical imaging. Medical Image Analysis, 11(5), 417–428.

    Article  Google Scholar 

  21. Akbay, S.S., Chatterjee, A. (2007). Fault-based alternate test of RF components. In: 25th International Conference on Computer Design (pp. 518–525).

  22. Nathan, K., Petros, D., Mustapha, S., et al. (2009). On boosting the accuracy of non-RF to RF correlation-based specification test compaction. Journal of Electronic Testing, 25(6), 309–321.

    Article  Google Scholar 

  23. Tavakkoli, A., Nicolescu, M., Bebis, G., et al. (2008). Incremental SVDD training: Improving efficiency of background modeling in videos. In: Proceedings of the IASTED Signal and Image Processing Conference.

  24. Khazai, S., Safari, A., Mojaradi, B., et al. (2012). Improving the SVDD approach to hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 9(4), 594–598.

    Article  Google Scholar 

  25. Liu, Y. H., Liu, Y. C., & Chen, Y. J. (2010). Fast support vector data descriptions for novelty detection. IEEE Transactions on Neural Networks, 21(8), 1296–1313.

    Article  Google Scholar 

  26. Jordi, M. M., Lorenzo, B., & Gustavo, C. V. (2007). A support vector domain description approach to supervised classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 45(8), 2683–2692.

    Article  Google Scholar 

  27. Banerjee, A., Burlina, P., & Diehl, C. (2006). A support vector method for anomaly detection in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2282–2291.

    Article  Google Scholar 

  28. Lee, D., & Lee, J. (2007). Domain described support vector classifier for multi-classification problems. Pattern Recognition, 40(1), 41–51.

    Article  MATH  Google Scholar 

  29. Kang, W. S., & Choi, J. Y. (2008). Domain density description for multiclass pattern classification with reduced computational load. Pattern Recognition, 41(6), 1997–2009.

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang, J., Neskovic, P., & Cooper, L. N. (2007). Bayes classification based on minimum bounding spheres. Neurocomputing, 70(4), 801–808.

    Article  Google Scholar 

  31. Mu, T. T., & Nandi, A. K. (2009). Multiclass classification based on extended support vector data description. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 39(5), 1206–1216.

    Article  Google Scholar 

  32. Zhu, M. L., Wang, Y., Chen, S. F. (2003). Sphere-structured support vector machines for multi-class pattern recognition. In: 9th International conference on Rough sets, fuzzy sets, data mining, and granular computing (pp. 589–593).

  33. Zhuang, J., Luo, J., Peng, Y., Wu, C. (2008). On-line fault detection method based on modified SVDD for industrial process system. In 3rd International Conference on Intelligent System and Knowledge Engineering (pp. 754–760).

  34. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.

    Article  MathSciNet  Google Scholar 

  35. Wang, R., Tang, K. (2009) Feature selection for maximizing the area under the ROC curve. In: IEEE International Conference on Data Mining Workshops (pp. 400–405).

  36. Cui, J., & Wang, Y. (2011). A novel approach of analog circuit fault diagnosis using support vector machines classifier. Measurement, 44(1), 281–289.

    Article  Google Scholar 

  37. Lingras, P., & Butz, C. (2007). Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification. Information Sciences, 177(18), 3782–3798.

    Article  Google Scholar 

  38. Cui, J., & Wang, Y. (2011). Analog circuit fault classification using improved one-against-one support vector machines. Metrology and Measurement Systems, XVIII, 4, 569–582.

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 61371041), National Natural Science Foundation of China (No. 61401215), Aviation Science Foundation of China (No. 2013ZD52055), Fundamental Research Funds for the Central Universities and Funding of Jiangsu Innovation Program for Graduate Education (No. CXLX11_0183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Wang, Y. & Luo, H. Fault diagnosis of analog circuit based on a second map SVDD. Analog Integr Circ Sig Process 85, 395–404 (2015). https://doi.org/10.1007/s10470-015-0597-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0597-9

Keywords

Navigation