Skip to main content
Log in

Wideband transimpedance amplifier using negative capacitance and capacitive feedback

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new wideband CMOS transimpedance amplifier (TIA) with low power dissipation. The negative capacitance technique is employed which reduces the parasitic capacitance. Furthermore, capacitive feedback technique is used in order to introduce pole-zero cancellation. Both these techniques, lead to bandwidth extension. Mentor Graphics Eldo simulation tool is used for simulation of the proposed TIA in TSMC 0.18 µm CMOS technology with 50 fF input photodiode capacitance. The simulated results show the − 3 dB bandwidth of 10.1 GHz which is about 8.3 GHz larger than simple TIA, transimpedance gain of 45.75 dBΩ and input current noise is 7.5 pA/√Hz with power consumption of 0.81 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mohan, S. S., Hershenson, M. D. M., Boyd, S. P., & Lee, T. H. (2000). Bandwidth extension in CMOS with optimized on-chip inductors. IEEE Journal of Solid-State Circuits, 35, 346–355.

    Article  Google Scholar 

  2. Hasan, S. M. R. (2005). Design of a low-power 3.5-GHz broad-band CMOS transimpedance amplifier for optical transceivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(6), 1061–1072.

    Article  Google Scholar 

  3. Jin, J., & Hsu, S. S. (2008). A40-Gb/s transimpedance amplifier in 0.18-µm CMOS technology. IEEE Journal of Solid-State Circuits, 43(6), 1449–1457.

    Article  Google Scholar 

  4. Kim, J., & Buckwalter, J. F. (2010). Bandwidth enhancement with low group-delay variation for 40-Gb/s transimpedance amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1964–1972.

    Article  MathSciNet  Google Scholar 

  5. Liang, H., Yizheng, Y., & Tao, B. (2007). 2.5 Gb/s CMOS RGC transimpedance amplifier. In Proceeding of international conference on microelectronics, Cairo, Egypt.

  6. Lu, Z., Yeo, K. S., Ma, J., Do, M. A., Lim, W. M., & Chen, X. (2007). Broadband design techniques for transimpedance amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(3), 590–600.

    Article  Google Scholar 

  7. Toumazou, C., & Park, S. M. (1996). Wideband low noise CMOS transimpedance amplifier for gigahertz operation. Electronics Letter, 32(13), 1194–1196.

    Article  Google Scholar 

  8. Yazgi, M., & Abu-Taha, J. (2016). A 7 GHz compact transimpedance amplifier TIA in CMOS 0.18 lm technology. Analog Integrated Circuits and Signal Processing, 86(3), 429–438.

    Article  Google Scholar 

  9. Vadipour, M. (1993). Capacitive feedback technique for wide-band amplifiers. IEEE Journal of Solid-State Circuits, 28(1), 90–92.

    Article  Google Scholar 

  10. Sae-Ngow, S., & Thanachayanont, A. (2003). A low-voltage, wide dynamic range CMOS floating active inductor. In Proceeding of TENCON conference on convergent technologies for the asia-pacific region, Bangalore, India.

  11. Thanachayanont, A. (2002). CMOS transistor-only active inductor for IF/RF applications. In Proceeding of IEEE international conference on industrial technology, Bankok, Thailand.

  12. Comer, D. J., et al. (2006). Bandwidth extension of high-gain CMOS stages using active negative capacitance. In Proceeding of 13th IEEE international conference on electronics, circuits and systems, Nice, France.

  13. Bansal, U., Gupta, M., & Singh, U. (2017). Frequency compensation of two stage CMOS circuit using negative capacitance and flipped voltage follower. Analog Integrated Circuits and Signal Processing, 90(1), 175–188.

    Article  Google Scholar 

  14. Razavi, B. (2003). Design of integrated circuits for optical communications. New York: McGraw-Hill.

    Google Scholar 

  15. Peng, X., & Sansen, W. (2005). Transconductance with capacitances feedback compensation for multistage amplifiers. IEEE Journal of Solid-State Circuits, 40(7), 1514–1520.

    Article  Google Scholar 

  16. Gray, P. R., & Meyer, R. G. (2001). Analysis and design of analog integrated circuits. New York: Wiley.

    Google Scholar 

  17. Sansen, W. M. C., & Chang, Z. Y. (1991). Low-noise wide-band amplifiers in bipolar and CMOS technologies. New York: Springer.

    Google Scholar 

  18. Chen, D., et al. (2013). Cross-coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission. IEEE Transactions on Very Large Scale of Integration (VLSI) Systems, 21(8), 1516–1525.

    Article  Google Scholar 

  19. Yazgi, M., & Abu-Taha, J. (2015). A 6.03 GHz low power transimpedance amplifier TIA in CMOS 0.18 lm technology. International Journal of Emerging Technology and Advanced Engineering, 5(2), 37–46.

    Google Scholar 

  20. Raut, R., & Ghasemi, O. (2008). A power efficient wide band transimpedance amplifier in sub-micron CMOS integrated circuit technology. In Proceeding of Joint 6th international IEEE northeast workshop on circuits and systems. Montreal, Canada.

  21. Sangirov, J., Ukaegbu, I. A., Nguyen, N. T. H., Lee, T. W., Cho, M. H., & Park, H. H. (2014). Design of small-area transimpedance optical receiver module for optical interconnects. In Proceeding of 16th international conference on advanced communication technology, Pyeongchang, South Korea.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesha Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Gupta, M. & Bansal, U. Wideband transimpedance amplifier using negative capacitance and capacitive feedback. Analog Integr Circ Sig Process 97, 269–279 (2018). https://doi.org/10.1007/s10470-018-1246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1246-x

Keywords

Navigation