Skip to main content
Log in

Ordered sets with interval representation and (m,n)-Ferrers relation

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Semiorders may form the simplest class of ordered sets with a not necessarily transitive indifference relation. Their generalization has given birth to many other classes of ordered sets, each of them characterized by an interval representation, by the properties of its relations or by forbidden configurations. In this paper, we are interested in preference structures having an interval representation. For this purpose, we propose a general framework which makes use of n-point intervals and allows a systematic analysis of such structures. The case of 3-point intervals shows us that our framework generalizes the classification of Fishburn by defining new structures. Especially we define three classes of ordered sets having a non-transitive indifference relation. A simple generalization of these structures provides three ordered sets that we call “d-weak orders”, “d-interval orders” and “triangle orders”. We prove that these structures have an interval representation. We also establish some links between the relational and the forbidden mode by generalizing the definition of a Ferrers relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, W. E. (1939). The determinateness of the utility function. The Economic Journal, 49, 453–467.

    Article  Google Scholar 

  • Baker, K. A., Fishburn, P. C., & Roberts, F. S. (1972). Partial orders of dimension 2. Networks, 2, 11–28.

    Article  Google Scholar 

  • Bogart, K. P., & Trenk, A. N. (1994). Bipartite tolerance orders. Discrete Mathematics, 132, 11–22.

    Article  Google Scholar 

  • Chipman, J. S. (1971). Consumption theory without transitive indifference. In J. S. Chipman, L. Hurwicz, M. K. Richter, & H. F. Sonnenschein (Eds.), Preferences, utility and demand (pp. 224–253). Harcourt Brace Jovanovich.

  • Dushnik, B., & Miller, E. W. (1941). Partially ordered sets. American Journal of Mathematics, 63, 600–610.

    Article  Google Scholar 

  • Fechner, G. T. (1860). Elemente der Psychophysik. Breitkof und Hartel.

  • Fishburn, P. C. (1970a). Intransitive indifference with unequal indifference intervals. Journal of Mathematical Psychology, 7, 144–149.

    Article  Google Scholar 

  • Fishburn, P. C. (1970b). Utility theory for decision making. New York: Wiley.

    Google Scholar 

  • Fishburn, P. C. (1985). Interval orders and interval graphs. New York: Wiley.

    Google Scholar 

  • Fishburn, P. C. (1997). Generalisations of semiorders: a review note. Journal of Mathematical Psychology, 41, 357–366.

    Article  Google Scholar 

  • Fishburn, P. C., & Monjardet, B. (1992). Wiener on the theory of measurement (1914, 1915, 1921). Journal of Mathematical Psychology, 36, 165–184.

    Article  Google Scholar 

  • Georgescu-Roegen, N. (1936). The pure theory of consumer’s behavior. Quarterly Journal of Economics, 50, 545–593.

    Article  Google Scholar 

  • Halphen, E. (1955). La notion de vraisemblance (Technical Report 4(1)). Publication de l’I.S.U. P.

  • Luce, R. D. (1956). Semiorders and a theory of utility discrimination. Econometrica, 24, 178–191.

    Article  Google Scholar 

  • Monjardet, B. (1978). Axiomatiques et propriétés des quasi ordres. Mathématiques et Sciences Humaines, 63, 51–82.

    Google Scholar 

  • Öztürk, M. (2005). Mathematical and logical structures for interval comparison. PhD thesis, Université Paris Dauphine.

  • Öztürk, M., & Tsoukiàs, A. (2006). Preference representation with 3-points intervals. In Proceedings of the ECAI-06 (pp. 417–421). Riva del Garda, Italy. August 28–September 1 2006.

  • Pirlot, M., & Vincke, Ph. (1997). Semi Orders. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Poincaré, H. (1905). La valeur de la science. Paris: Flammarion.

    Google Scholar 

  • Rabinovitch, I. (1978). The dimension of semiorders. Journal of Combinatorial Theory A, 25, 50–61.

    Article  Google Scholar 

  • Riguet, J. (1950). Sur les ensembles réguliers de rélations binaires, les relations de Ferrers. Comptes Rendus de l’Académie des Sciences, 231, 936–937.

    Google Scholar 

  • Scott, D., & Suppes, P. (1958). Foundational aspects of theories of measurement. Journal of Symbolic Logic, 23, 113–128.

    Article  Google Scholar 

  • Trenk, A. N. (1998). On k-weak orders: recognition and a tolerance result. Discrete Mathematics, 181, 223–237.

    Article  Google Scholar 

  • Trotter, W. T. (1992). Combinatorics and partially ordered sets. Baltimore: John Hopkins University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meltem Öztürk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öztürk, M. Ordered sets with interval representation and (m,n)-Ferrers relation. Ann Oper Res 163, 177–196 (2008). https://doi.org/10.1007/s10479-008-0334-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0334-1

Keywords

Navigation