Skip to main content
Log in

Improved convergent heuristics for the 0-1 multidimensional knapsack problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

At the end of the seventies, Soyster et al. (Eur. J. Oper. Res. 2:195–201, 1978) proposed a convergent algorithm that solves a series of small sub-problems generated by exploiting information obtained through a series of linear programming relaxations. This process is suitable for the 0-1 mixed integer programming problems when the number of constraints is relatively smaller when compared to the number of variables. In this paper, we first revisit this algorithm, once again presenting it and some of its properties, including new proofs of finite convergence. This algorithm can, in practice, be used as a heuristic if the number of iterations is limited. We propose some improvements in which dominance properties are emphasized in order to reduce the number of sub problems to be solved optimally. We also add constraints to these sub-problems to speed up the process and integrate adaptive memory. Our results show the efficiency of the proposed improvements for the 0-1 multidimensional knapsack problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahuja, R. K., Ergun, O., Orlin, J. B., & Punnen, A. P. (2002). Survey of very large-scale neighborhood search techniques. Discrete Applied Mathematics, 123, 75–102.

    Article  Google Scholar 

  • Balas, E., & Jeroslow, R. (1972). Canonical cuts on the unit hypercube. SIAM Journal on Applied Mathematics, 23, 61–69.

    Article  Google Scholar 

  • Beasley, J. E. (1990). OR-Library: distributing test problems by electronic mail. Journal of the Operational Research Society, 41, 1069–1072.

    Google Scholar 

  • Danna, E., Rothberg, E., & Le Pape, C. (2005). Exploring relaxations induced neighborhoods to improve MIP solutions. Mathematical Programming, 102, 71–90.

    Article  Google Scholar 

  • Fischetti, M., & Lodi, A. (2003). Local Branching. Mathematical Programming, 98, 23–47.

    Article  Google Scholar 

  • Fréville, A. (2004). The multidimensional 0-1 knapsack problem: an overview. European Journal of Operational Research, 155, 1–21.

    Article  Google Scholar 

  • Fréville, A., & Hanafi, S. (2005). The multidimensional 0-1 knapsack problem – Bounds and computational aspects. Annals of Operations Research, 139, 195–227. M. Guignard and K. Spielberg (Eds.).

    Article  Google Scholar 

  • Fréville, A., & Plateau, G. (1993). Sac-à-dos multidimensionnel en variables 0-1: encadrement de la somme des variables à l’optimum. RAIRO Operations Research, 27, 169–187.

    Google Scholar 

  • Fréville, A., & Plateau, G. (1994). An efficient preprocessing procedure for the multidimensional knapsack problem. Discrete Applied Mathematics, 49, 189–212.

    Article  Google Scholar 

  • Glover, F. (1965). A multiphase-dual algorithm for the zero-one integer programming problem. Operations Research, 13, 879–919.

    Article  Google Scholar 

  • Glover, F. (1975). Surrogate constraints duality in mathematical programming. Operations Research, 23, 434–451.

    Article  Google Scholar 

  • Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences, 8, 156–166.

    Article  Google Scholar 

  • Glover, F. (2005). Adaptive memory projection methods for integer programming. In C. Rego & B. Alidaee (Eds.), Metaheuristic optimization via memory and evolution (pp. 425–440). Boston: Kluwer.

    Chapter  Google Scholar 

  • Glover, F., & Kochenberger, G. (1996). Critical event tabu search for multidimensional knapsack problems. In I. H. Osman & J. P. Kelly (Eds.), Meta heuristics: theory and applications (pp. 407–427). Boston: Kluwer.

    Google Scholar 

  • Glover, F., & Laguna, M. (1997). Tabu search, (pp. 1–412). Boston: Kluwer.

    Google Scholar 

  • Guignard, M., & Spielberg, K. (2003). Double contraction, double probing, short starts and BB-probing cuts for mixed (0,1) programming. Technical Report, Wharton School.

  • Hanafi, S., & Fréville, A. (1998). An efficient tabu search approach for the 0-1 multidimensional knapsack problem. European Journal of Operational Research, 106, 659–675.

    Article  Google Scholar 

  • Hansen, P., & Mladenovic, N. (2001). Variable neighborhood search: principles and applications. European Journal of Operational Research, 130, 449–467.

    Article  Google Scholar 

  • Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems (pp. 1–572). Berlin: Springer.

    Google Scholar 

  • Lichtenberger, D. (2005). An extended local branching framework and its application to the multidimensional knapsack problem. Master Thesis, Vienna University of Technology, Institute of Computer Graphics and Algorithms.

  • Martello, S., & Toth, P. (1990). Knapsack problems: algorithms and computer implementations (pp. 1–308). New York: Wiley.

    Google Scholar 

  • Nemhauser, G. L., & Wolsey, L. A. (1999). Integer and combinatorial optimization (pp. 1–784). New York: Willey.

    Google Scholar 

  • Pisinger, D. (1995). An expanding-core algorithm for the exact 0-1 knapsack problem. European Journal of Operational Research, 87, 175–187.

    Article  Google Scholar 

  • Puchinger, J., Raidl, G., & Pferschy, U. (2006). The core concept for the multidimensional knapsack problem. In Proceedings of evolutionary computation in combinatorial optimization, 6th European conference (pp. 195–208). EvoCOP 2006.

  • Rardin, R., & Karwan, M. H. (1984). Surrogate dual multiplier search procedures in integer programming. Operations Research, 32, 52–69.

    Article  Google Scholar 

  • Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing problems. In The 4th international conference on principles and practice of constraint programming. Lecture Notes in Computer Science, vol. 1520 (pp. 417–431).

  • Soyster, A. L., Lev, B., & Slivka, W. (1978). Zero-one programming with many variables and few constraints. European Journal of Operational Research, 2, 195–201.

    Article  Google Scholar 

  • Spielberg, K., & Guignard, M. (2000). A sequential (quasi) hot start method for BB (0,1) mixed integer programming. Mathematical Programming Symposium, Atlanta.

  • Vasquez, M., & Hao, J. K. (2001). Une approche hybride pour le sac à dos multidimensionnel en variables 0-1. RAIRO Operations Research, 35, 415–438.

    Article  Google Scholar 

  • Vasquez, M., & Vimont, Y. (2005). Improved results on the 0-1 multidimensional knapsack problem. European Journal of Operational Research, 165, 70–81.

    Article  Google Scholar 

  • Wilbaut, C., & Hanafi, S. (2009). New convergent heuristics for 0-1 mixed integer programming. European Journal of Operational Research, 195, 62–74.

    Article  Google Scholar 

  • Wilbaut, C., Hanafi, S., Fréville, A., & Balev, S. (2006). Tabu search: global intensification using dynamic programming. Control and Cybernetic, 35, 579–598.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saïd Hanafi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanafi, S., Wilbaut, C. Improved convergent heuristics for the 0-1 multidimensional knapsack problem. Ann Oper Res 183, 125–142 (2011). https://doi.org/10.1007/s10479-009-0546-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0546-z

Keywords

Navigation