Skip to main content

Advertisement

Log in

Genetic algorithm-based multi-criteria project portfolio selection

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Project portfolio selection is one of the most important decision-making problems for most organizations in project management and engineering management. Usually project portfolio decisions are very complicated when project interactions in terms of multiple selection criteria and preference information of decision makers (DMs) in terms of the criteria importance are taken into consideration simultaneously. In order to solve this complex decision-making problem, a multi-criteria project portfolio selection problem considering project interactions in terms of multiple selection criteria and DMs’ preferences is first formulated. Then a genetic algorithm (GA)-based nonlinear integer programming (NIP) approach is used to solve the multi-criteria project portfolio selection problem. Finally, two illustrative examples are presented for demonstration and verification purposes. Experimental results obtained indicate that the GA-based NIP approach can be used as a feasible and effective solution to multi-criteria project portfolio selection problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaker, D. A., & Tyebjee, T. T. (1978). A model for the selection of interdependent R&D projects. IEEE Transactions on Engineering Management, 25, 30–36.

    Google Scholar 

  • Abiyev, R. H., & Menekay, M. (2007). Fuzzy portfolio selection using genetic algorithm. Soft Computing, 11, 1157–1163.

    Article  Google Scholar 

  • Boros, E., & Hammer, P. (2002). Pseudo-Boolean optimization. Discrete Applied Mathematics, 123, 155–225.

    Article  Google Scholar 

  • Bouyssou, D., Marchant, T., Pirlot, M., Tsoukias, A., & Vincke, P. (2006). Evaluation and decision models with multiple criteria: stepping stones for the analyst. New York: Springer.

    Google Scholar 

  • Carlsson, C., & Fuller, R. (1995). Multiple criteria decision making: the case for interdependence. Computers & Operations Research, 22, 251–260.

    Article  Google Scholar 

  • Carraway, R. L., & Schmidt, R. L. (1991). An improved discrete dynamic programming algorithm for allocating resources among interdependent projects. Management Science, 37, 1195–1200.

    Article  Google Scholar 

  • Cooper, R. G., Edgett, S. J., & Kleinschmidt, E. J. (1999). New product portfolio management: practices and performance. Journal of Product Innovation Management, 16, 333–351.

    Article  Google Scholar 

  • Cox, D. R. (1984). Interaction. International Statistical Review, 52, 1–25.

    Article  Google Scholar 

  • Dickinson, M. W., Thornton, A. C., & Graves, S. (2001). Technology portfolio management: optimizing interdependent projects over multiple time periods. IEEE Transactions on Engineering Management, 48, 518–527.

    Article  Google Scholar 

  • Ewing, P. L. Jr., Tarantino, W., & Parnell, G. S. (2006). Use of decision analysis in the army base realignment and closure (BRAC) 2005 military value analysis. Decision Analysis, 3, 33–49.

    Article  Google Scholar 

  • Fox, G. E., Baker, N. R., & Bryant, J. L. (1984). Economic models for R and D project selection in the presence of project interactions. Management Science, 30, 890–902.

    Article  Google Scholar 

  • Golabi, K. (1987). Selecting a group of dissimilar projects for funding. IEEE Transactions on Engineering Management, 34, 138–145.

    Google Scholar 

  • Golabi, K., Kirkwood, C. W., & Sicherman, A. (1981). Selecting a portfolio of solar energy projects using multiattribute preference theory. Management Science, 27, 174–189.

    Article  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. New York: Addison-Wesley.

    Google Scholar 

  • Hammer, P., & Rudeanu, S. (1968). Boolean methods in operations research and related areas. Berlin: Springer.

    Book  Google Scholar 

  • Henriksen, A. D. P., & Palocsay, S. W. (2008). An Excel-based decision support system for scoring and ranking proposed R&D projects. International Journal of Information Technology and Decision Making, 7(3), 529–546.

    Article  Google Scholar 

  • Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives: preferences and value trade-offs. New York: Wiley.

    Google Scholar 

  • Kleinmuntz, D. N. (2007). Resource allocation decisions. In W. Edwards, R. F. Miles, & D. von Winterfeldt (Eds.), Advances in decision analysis: from foundations to applications. New York: Cambridge University Press.

    Google Scholar 

  • Kleinmuntz, C. E., & Kleinmuntz, D. N. (1999). Strategic approaches for allocating capital in healthcare organizations. Healthcare Financial Management, 53, 52–58.

    Google Scholar 

  • Korhonen, P., Moskowitz, H., & Wallenius, J. (1992). Multiple criteria decision support—a review. European Journal of Operational Research, 63, 361–375.

    Article  Google Scholar 

  • Kuei, C. H., Lin, C., Aheto, J., & Madu, C. N. (1994). A strategic decision model for the selection of advanced technology. International Journal of Production Research, 32, 2117–2130.

    Article  Google Scholar 

  • Liesio, J. (2006). Robust portfolio optimization in multi-criteria project selection. Licentiate’s Thesis, Helsinki University of Technology.

  • Liesio, J., Mild, P., & Salo, A. (2007). Preference programming for robust portfolio modeling and project selection. European Journal of Operational Research, 181, 1488–1505.

    Article  Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Google Scholar 

  • Mavrotas, G., Diakoulaki, D., & Caloghirou, Y. (2006). Project prioritization under policy restrictions: a combination of MCDA with 0–1 programming. European Journal of Operational Research, 171, 296–308.

    Article  Google Scholar 

  • Medaglia, A. L., Graves, S. B., & Ringuest, L. J. (2007a). A multiobjective evolutionary approach for linearly constrained project selection under uncertainty. European Journal of Operational Research, 179, 869–894.

    Article  Google Scholar 

  • Medaglia, A. L., Hueth, D., Mendieta, J. C., & Sefair, J. A. (2007b). Multiobjective model for the selection and timing of public enterprise projects. Socio-Economic Planning Sciences, 41, 31–45.

    Google Scholar 

  • Ostermark, R. (1997). Temporal interdependence in fuzzy MCDM problems. Fuzzy Sets and Systems, 88, 69–79.

    Article  Google Scholar 

  • Peng, Y., Kou, G., Shi, Y., & Chen, Z. (2008a). A descriptive framework for the field of data mining and knowledge discovery. International Journal of Information Technology and Decision Making, 7(4), 639–682.

    Article  Google Scholar 

  • Peng, Y., Kou, G., Shi, Y., & Chen, Z. (2008b). A multi-criteria convex quadratic programming model for credit data analysis. Decision Support Systems, 44(4), 1016–1030.

    Article  Google Scholar 

  • Roy, B. (1996). Multicriteria methodology for decision aiding nonconvex optimization and its applications. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Santhanam, R., & Kyparisis, J. (1995). A multiple criteria decision model for information system project selection. Computers & Operations Research, 22, 807–818.

    Article  Google Scholar 

  • Stewart, T. J. (1992). A critical survey on the status of multiple criteria decision making theory and practice. Omega, 20, 569–586.

    Article  Google Scholar 

  • Stummer, C., & Heidenberger, K. (2003). Interactive R&D portfolio analysis with project interdependencies and time profiles of multiple objectives. IEEE Transactions on Engineering Management, 50, 175–183.

    Article  Google Scholar 

  • Stummer, C., Kiesling, E., & Gutjahr, W. J. (2009). A multicriteria decision support system for competence-driven project portfolio selection. International Journal of Information Technology and Decision Making, 8(2), 379–401.

    Article  Google Scholar 

  • Talias, M. A. (2007). Optimal decision indices for R&D project evaluation in the pharmaceutical industry: Pearson index versus Gittins index. European Journal of Operational Research, 177, 1105–1112.

    Article  Google Scholar 

  • Yu, L., Wang, S. Y., & Lai, K. K. (2006). An integrated data preparation scheme for neural network data analysis. IEEE Transactions on Knowledge and Data Engineering, 18, 217–230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lean Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Wang, S., Wen, F. et al. Genetic algorithm-based multi-criteria project portfolio selection. Ann Oper Res 197, 71–86 (2012). https://doi.org/10.1007/s10479-010-0819-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-010-0819-6

Keywords

Navigation