Skip to main content

Advertisement

Log in

Heuristic optimisation in financial modelling

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

There is a large number of optimisation problems in theoretical and applied finance that are difficult to solve as they exhibit multiple local optima or are not ‘well-behaved’ in other ways (e.g., discontinuities in the objective function). One way to deal with such problems is to adjust and to simplify them, for instance by dropping constraints, until they can be solved with standard numerical methods. We argue that an alternative approach is the application of optimisation heuristics like Simulated Annealing or Genetic Algorithms. These methods have been shown to be capable of handling non-convex optimisation problems with all kinds of constraints. To motivate the use of such techniques in finance, we present several actual problems where classical methods fail. Next, several well-known heuristic techniques that may be deployed in such cases are described. Since such presentations are quite general, we then describe in some detail how a particular problem, portfolio selection, can be tackled by a particular heuristic method, Threshold Accepting. Finally, the stochastics of the solutions obtained from heuristics are discussed. We show, again for the example from portfolio selection, how this random character of the solutions can be exploited to inform the distribution of computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acker, D., & Duck, N. W. (2007). Reference-day risk and the use of monthly returns data. Journal of Accounting, Auditing and Finance, 22(4), 527–557.

    Google Scholar 

  • Althöfer, I., & Koschnick, K.-U. (1991). On the convergence of “Threshold Accepting”. Applied Mathematics & Optimization, 24(1), 183–195.

    Article  Google Scholar 

  • Bakshi, G., Cao, C., Chen, Z. (1997). Empirical performance of alternative option pricing models. Journal of Finance, 52(5), 2003–2049.

    Article  Google Scholar 

  • Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G. C., & Stewart, W. R. (1995). Designing and reporting on computational experiments with heuristic methods. Journal of Heuristics, 1(1), 9–32.

    Article  Google Scholar 

  • Bates, D. S. (2003). Empirical option pricing: a retrospection. Journal of Econometrics, 116(1–2), 387–404.

    Article  Google Scholar 

  • Blume, M. E. (1971). On the assessment of risk. Journal of Finance, 26(1), 1–10.

    Article  Google Scholar 

  • Chan, L. K. C., & Lakonishok, J. (1992). Robust measurement of beta risk. Journal of Financial and Quantitative Analysis, 27(2), 265–282.

    Article  Google Scholar 

  • Chan, L. K. C., Karceski, J., & Lakonishok, J. (1999). On portfolio optimization: forecasting covariances and choosing the risk model. The Review of Financial Studies, 12(5), 937–974.

    Article  Google Scholar 

  • Chekhlov, A., Uryasev, S., & Zabarankin, M. (2005). Drawdown measure in portfolio optimization. International Journal of Theoretical and Applied Finance, 8(1), 13–58.

    Article  Google Scholar 

  • Constantinides, G. M., & Malliaris, A. G. (1995). Portfolio theory. In R. A. Jarrow, V. Maksimovic, & W. T. Ziemba (Eds.), Handbooks in operations research and management science: Vol. 9: Finance (pp. 1–30). Amsterdam: North-Holland.

    Google Scholar 

  • Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1, 223–236.

    Article  Google Scholar 

  • Cont, R., & da Fonseca, J. (2002). Dynamics of implied volatility surfaces. Quantitative Finance, 2, 45–60.

    Article  Google Scholar 

  • Dacorogna, M. M., Gençay, R., Müller, U. A., Olsen, R. B., & Pictet, O. V. (2001). An introduction to high-frequency finance. San Diego: Academic Press.

    Google Scholar 

  • Dembo, R. S. (1991). Scenario optimization. Annals of Operation Research, 30(1), 63–80.

    Article  Google Scholar 

  • Diebold, F. X., & Li, C. (2006). Forecasting the term structure of government bond yields. Journal of Econometrics, 130(2), 337–364.

    Article  Google Scholar 

  • Dixit, A. K. (1990). Optimization in economic theory (2nd ed.). London: Oxford University Press.

    Google Scholar 

  • Dueck, G., & Scheuer, T. (1990). Threshold Accepting. A general purpose optimization algorithm superior to Simulated Annealing. Journal of Computational Physics, 90(1), 161–175.

    Article  Google Scholar 

  • Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using Particle Swarm theory. In Proceedings of the sixth international symposium on micromachine and human science, Nagoya, Japan (pp. 39–43).

    Chapter  Google Scholar 

  • Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33, 3–56.

    Article  Google Scholar 

  • Fama, E. F., & French, K. R. (2004). The capital asset pricing model: theory and evidence. The Journal of Economic Perspectives, 18(3), 25–46.

    Article  Google Scholar 

  • Gaivoronski, A. A., & Pflug, G. (2005). Value-at-risk in portfolio optimization: properties and computational approach. The Journal of Risk, 7(2), 1–31.

    Google Scholar 

  • Gendreau, M., & Potvin, J.-Y. (Eds.) (2010). Handbook of metaheuristics (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Genton, M. G., & Ronchetti, E. (2008). Robust prediction of beta. In: E. J. Kontoghiorghes, B. Rustem, & P. Winker (Eds.), Computational methods in financial engineering—essays in honour of Manfred Gilli. Berlin: Springer.

    Google Scholar 

  • Gill, P. E., Murray, W., & Wright, M. H. (1986). Practical optimization. Amsterdam: Elsevier.

    Google Scholar 

  • Gilli, M., & Këllezi, E. (2002a). A global optimization heuristic for portfolio choice with VaR and expected shortfall. In: E. J. Kontoghiorghes, B. Rustem, & S. Siokos (Eds.), Applied optimization series: Computational methods in decision-making, economics and finance (pp. 167–183). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Gilli, M., & Këllezi, E. (2002b). The Threshold Accepting heuristic for index tracking. In P. Pardalos & V. K. Tsitsiringos (Eds.), Applied optimization series: Financial engineering, e-commerce and supply chain (pp. 1–18). Boston: Kluwer Academic.

    Google Scholar 

  • Gilli, M., & Schumann, E. (2010a). Distributed optimisation of a portfolio’s omega. Parallel Computing, 36(7), 381–389.

    Article  Google Scholar 

  • Gilli, M., & Schumann, E. (2010b). Portfolio optimization with “Threshold Accepting”: a practical guide. In S. E. Satchell (Ed.), Optimizing optimization: the next generation of optimization applications and theory. Amsterdam: Elsevier.

    Google Scholar 

  • Gilli, M., & Schumann, E. (2010c). Optimization in financial engineering—an essay on ‘good’ solutions and misplaced exactitude. Journal of Financial Transformation, 28, 117–122.

    Google Scholar 

  • Gilli, M., & Schumann, E. (2010d). Optimal enough? Journal of Heuristics. doi:10.1007/s10732-010-9138-y.

  • Gilli, M., & Schumann, E. (2011). Risk-reward optimisation for long-run investors: an empirical analysis. European Actuarial Journal. Available from http://www.actuaries.org/Munich2009/Programme_EN.cfm.

  • Gilli, M., & Winker, P. (2003). A global optimization heuristic for estimating agent based models. Computational Statistics & Data Analysis, 42(3), 299–312.

    Article  Google Scholar 

  • Gilli, M., & Winker, P. (2008). A review of heuristic optimization methods in econometrics. Swiss finance institute research paper No. 08-12.

  • Gilli, M., & Winker, P. (2009). Heuristic optimization methods in econometrics. In D. A. Belsley & E. Kontoghiorghes (Eds.), Handbook of computational econometrics. New York: Wiley.

    Google Scholar 

  • Gilli, M., Këllezi, E., & Hysi, H. (2006). A data-driven optimization heuristic for downside risk minimization. The Journal of Risk, 8(3), 1–18.

    Google Scholar 

  • Gilli, M., Maringer, D., & Winker, P. (2008). Applications of heuristics in finance. In D. Seese, C. Weinhardt, & F. Schlottmann (Eds.), Handbook on information technology in finance. Berlin: Springer.

    Google Scholar 

  • Gilli, M., Schumann, E., di Tollo, G., Cabej G. (2010). Constructing 130/30-portfolios with the omega ratio. Journal of Asset Management. doi:10.1057/jam.2010.25.

    Google Scholar 

  • Gilli, M., Maringer, D., & Schumann, E. (2011). Numerical methods and optimization in finance. Amsterdam: Elsevier.

    Google Scholar 

  • Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533–549.

    Article  Google Scholar 

  • Glover, F. (2007). Tabu Search—uncharted domains. Annals of Operation Research, 149(1), 89–98.

    Article  Google Scholar 

  • Glover, F., & Laguna, M. (1997). Tabu Search. Dordrecht: Kluwer Academic.

    Book  Google Scholar 

  • Hamida, S. B., & Cont, R. (2005). Recovering volatility from option prices by evolutionary optimization. Journal of Computational Finance, 8(4), 1–2.

    Google Scholar 

  • Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bonds and currency options. The Review of Financial Studies, 6(2), 327–343.

    Article  Google Scholar 

  • Hillier, F. S. (1983). Heuristics: a Gambler’s roll. Interfaces, 13(3), 9–12.

    Article  Google Scholar 

  • Hochreiter, R. (2008). Evolutionary stochastic portfolio optimization. In A. Brabazon & M. O’Neill (Eds.), Natural computing in computational finance. Berlin: Springer.

    Google Scholar 

  • Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. Cambridge: MIT Press.

    Google Scholar 

  • Hoos, H. H., & Stützle, T. (2004). Stochastic Local Search: foundations and applications. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Ince, O. S., & Porter, R. B. (2006). Individual equity return data from Thomson datastream: handle with care! Journal of Financial Research, 29(4), 463–479.

    Article  Google Scholar 

  • Keating, C., & Shadwick, B. (2002). An introduction to omega. AIMA Newsletter (April 2002).

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671–680.

    Article  Google Scholar 

  • Kirman, A. P. (1992). Whom or what does the representative individual represent? The Journal of Economic Perspectives, 6(2), 117–136.

    Google Scholar 

  • Kirman, A. P. (1993). Ants, rationality, and recruitment. The Quarterly Journal of Economics, 108(1), 137–156.

    Article  Google Scholar 

  • Knez, P. J., & Ready, M. J. (1997). On the robustness of size and book-to-market in cross-sectional regressions. Journal of Finance, 52(4), 1355–1382.

    Article  Google Scholar 

  • LeBaron, B. (2000). Agent-based computational finance: suggested readings and early research. Journal of Economic Dynamics & Control, 24, 679–702.

    Article  Google Scholar 

  • LeBaron, B. (2006). Agent-based computational finance. In L. H. Tesfatsion & K. H. L. Judd (Eds.), Handbook of computational economics (Vol. II, pp. 1187–1233). Amsterdam: Elsevier.

    Google Scholar 

  • Lo, A. W. (2008). Hedge funds—an analytic perspective. Princeton: Princeton University Press.

    Google Scholar 

  • Luenberger, D. G. (1998). Investment science. Oxford: Oxford University Press.

    Google Scholar 

  • Madan, D. B. (2001). On the modelling of option prices. Quantitative Finance, 1, 481.

    Article  Google Scholar 

  • Manaster, S., & Koehler, G. (1982). The calculation of implied variances from the Black–Scholes model: a note. Journal of Finance, 37(1), 227–230.

    Article  Google Scholar 

  • Maniezzo, V., Stützle, T., & Voß, S. (Eds.) (2009). Matheuristics: hybridizing metaheuristics and mathematical programming. Berlin: Springer.

    Google Scholar 

  • Maringer, D. (2004). Finding the relevant risk factors for asset pricing. Computational Statistics & Data Analysis, 47, 339–352.

    Article  Google Scholar 

  • Maringer, D. (2005). Portfolio management with heuristic optimization. Berlin: Springer.

    Google Scholar 

  • Maringer, D. (2008). Risk preferences and loss aversion in portfolio optimization. In E. J. Kontoghiorghes, B. Rustem, & P. Winker (Eds.), Computational methods in financial engineering—essays in honour of Manfred Gilli. Berlin: Springer.

    Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.

    Article  Google Scholar 

  • Markowitz, H. M. (1959). Portfolio selection. New York: Wiley.

    Google Scholar 

  • Martin, R. D., & Simin, T. T. (2003). Outlier-resistant estimates of beta. Financial Analysts Journal, 59(5), 56–69.

    Article  Google Scholar 

  • Michalewicz, Z., & Fogel, D. B. (2004). How to solve it: modern heuristics. Berlin: Springer.

    Google Scholar 

  • Mikhailov, S., & Nögel, U. (2003). Heston’s stochastic volatility model implementation, calibration and some extensions. Wilmott, pp. 74–79.

  • Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 1097–1100.

    Article  Google Scholar 

  • Moscato, P. (1989). On evolution, search, optimization, Genetic Algorithms and martial arts—towards memetic algorithms. Technical Report 790, CalTech California Institute of Technology.

  • Moscato, P., & Fontanari, J. F. (1990). Stochastic versus deterministic update in Simulated Annealing. Physics Letters A, 146(4), 204–208.

    Article  Google Scholar 

  • Nelson, C. R., & Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of Business, 60(4), 473–489.

    Article  Google Scholar 

  • Pisinger, D., & Ropke, S. (2010). Large neighborhood search. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of metaheuristics (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2(3), 21–41.

    Google Scholar 

  • Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79(388), 871–880.

    Article  Google Scholar 

  • Schlottmann, F., & Seese, D. (2004). Modern heuristics for finance problems: a survey of selected methods and applications. In S. T. Rachev (Ed.), Handbook of computational and numerical methods in finance. Basel: Birkhäuser.

    Google Scholar 

  • Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., & Dueck, G. (2000). Record breaking optimization results using the ruin and recreate principle. Journal of Computational Physics, 159(2), 139–171.

    Article  Google Scholar 

  • Sortino, F., van der Meer, R., & Plantinga, A. (1999). The Dutch triangle. Journal of Portfolio Management, 26(1), 50–58.

    Article  Google Scholar 

  • Storn, R. M., & Price, K. V. (1997). Differential Evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  Google Scholar 

  • Svensson, L. E. O. (1994). Estimating and interpreting forward interest rates: Sweden 1992–1994. IMF Working Paper 94/114.

  • Talbi, E.-G. (2002). A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8(5), 541–564.

    Article  Google Scholar 

  • Vasicek, O. A. (1973). A note on the cross-sectional information in Bayesian estimation of security betas. Journal of Finance, 28(5), 1233–1239.

    Article  Google Scholar 

  • Winker, P. (2001). Optimization heuristics in econometrics: applications of Threshold Accepting. New York: Wiley.

    Google Scholar 

  • Winker, P., & Fang, K.-T. (1997). Application of Threshold-Accepting to the evaluation of the discrepancy of a set of points. SIAM Journal on Numerical Analysis, 34(5), 2028–2042.

    Article  Google Scholar 

  • Winker, P., & Gilli, M. (2004). Applications of optimization heuristics to estimation and modelling problems. Computational Statistics and Data Analysis, 47(2), 211–223.

    Article  Google Scholar 

  • Winker, P., & Maringer, D. (2007). The Threshold Accepting optimisation algorithm in economics and statistics. In E. J. Kontoghiorghes & C. Gatu (Eds.), Advances in computational management science: Vol. 9. Optimisation, econometric and financial analysis (pp. 107–125). Berlin: Springer.

    Chapter  Google Scholar 

  • Winker, P., Gilli, M., & Jeleskovic, V. (2007). An objective function for simulation based inference on exchange rate data. Journal of Economic Interaction and Coordination, 2, 125–145.

    Article  Google Scholar 

  • Zanakis, S. H., & Evans, J. R. (1981). Heuristic “optimization”: why, when, and how to use it. Interfaces, 11(5), 84–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Gilli.

Additional information

This paper builds on an invited lecture by Manfred Gilli at the APMOD 2008 conference in Bratislava, Slovakia. The authors would like to thank the conference organisers, in particular Georg Pflug and Ronald Hochreiter, and participants of the session. Both authors also gratefully acknowledge financial support from the EU Commission through MRTN-CT-2006-034270 COMISEF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilli, M., Schumann, E. Heuristic optimisation in financial modelling. Ann Oper Res 193, 129–158 (2012). https://doi.org/10.1007/s10479-011-0862-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0862-y

Keywords

Navigation