Skip to main content
Log in

On variable discounting in dynamic programming: applications to resource extraction and other economic models

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper generalizes the classical discounted utility model introduced in Samuelson (Rev. Econ. Stud. 4:155–161, 1937) by replacing a constant discount rate with a function. The existence of recursive utilities and their constructions are based on Matkowski’s extension of the Banach Contraction Principle. The derived utilities go beyond the class of recursive utilities studied in the literature and enable a discussion on subtle issues concerning time preferences in the theory of finance, economics or psychology. Moreover, our main results are applied to the theory of optimal economic growth related with resource extraction models with unbounded utility function of consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, F., & Stokey, N. (1998). Dynamic programming with homogeneous functions. Journal of Economic Theory, 82, 167–189.

    Article  Google Scholar 

  • Becker, R. A., & Boyd, J. H. III (1997). Capital theory, equilibrium analysis and recursive utility. New York: Blackwell.

    Google Scholar 

  • Benzion, U., Rapoport, A., & Yagil, J. (1989). Discount rates inferred from decisions: an experimental study. Management Science 35, 270–284.

    Article  Google Scholar 

  • Berge, C. (1963). Topological spaces. New York: MacMillan.

    Google Scholar 

  • Bhattacharya, R., & Majumdar, M. (2007). Random dynamical systems: theory and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Blackwell, D. (1965). Discounted dynamic programming. Annals of Mathematical Statistics, 36, 226–235.

    Article  Google Scholar 

  • Boyd, J. H. III (1990). Recursive utility and the Ramsey problem. Journal of Economic Theory, 50, 326–345.

    Article  Google Scholar 

  • Boyd, J. H. III (2006). Discrete-time recursive utility. In R. A. Dana, C. Le Van, T. Mitra, & K. Nishimura (Eds.), Handbook of optimal growth 1, discrete time (pp. 251–272). New York: Springer.

    Chapter  Google Scholar 

  • Denardo, E. V. (1967). Contraction mappings in the theory underlying dynamic programming. SIAM Review, 9, 165–177.

    Article  Google Scholar 

  • Dugundji, J., & Granas, A. (2003). Fixed point theory. New York: Springer.

    Google Scholar 

  • Epstein, L., & Hynes, J. A. (1983). The rate of time preference and dynamic economic analysis. Journal of Political Economy, 91, 611–635.

    Article  Google Scholar 

  • Feinberg, E. A. (2002). Total reward criteria. In E. A. Feinberg & A. Shwartz (Eds.), Handbook of Markov decision processes (pp. 173–207). Boston: Kluwer.

    Chapter  Google Scholar 

  • Frederick, S., Loewenstein, G., & O’Donoghue, T. (2002). Time discounting and time preference: a critical review. Journal of Economic Literature, 11, 351–401.

    Article  Google Scholar 

  • Green, L., Myerson, J., & McFadden, E. (1997). Rate of temporal discounting decreases with amount of reward. Memory & Cognition, 25, 715–723.

    Article  Google Scholar 

  • Hernández-Lerma, O., & Lasserre, J. B. (1996). Discrete-time Markov control processes: basic optimality criteria. New York: Springer.

    Book  Google Scholar 

  • Hernández-Lerma, O., & Lasserre, J. B. (1999). Further topics on discrete-time Markov control processes. New York: Springer.

    Book  Google Scholar 

  • Hinderer, K. (1970). Foundations of non-stationary dynamic programming with discrete time parameter. In Lecture notes in oper. res., Vol. 33. New York: Springer.

    Google Scholar 

  • Jaśkiewicz, A., Matkowski, J., & Nowak, A. S. (2011). Persistently optimal policies in stochastic dynamic programming with generalized discounting. Working Paper. Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Poland.

  • Kirby, K. N. (1997). Bidding on the future: evidence against normative discounting of delayed rewards. Journal of Experimental Psychology. General, 126, 54–70.

    Article  Google Scholar 

  • Koopmans, T. C. (1960). Stationary ordinal utility and impatience. Econometrica, 28, 287–309.

    Article  Google Scholar 

  • Kreps, D. M., & Porteus, E. L. (1978). Temporal resolution of uncertainty and dynamic choice theory. Econometrica 46, 185–200.

    Article  Google Scholar 

  • Le Van, C., & Morhaim, L. (2002). Optimal growth models with bounded or unbounded returns: a unifying approach. Journal of Economic Theory 105, 158–187.

    Article  Google Scholar 

  • Le Van, C., & Vailakis, Y. (2005). Recursive utility and optimal growth with bounded or unbounded returns. Journal of Economic Theory 123, 187–209.

    Article  Google Scholar 

  • Lucas, R. E., & Stokey, N. (1984). Optimal growth with many consumers. Journal of Economic Theory, 32, 139–171.

    Article  Google Scholar 

  • Marinacci, M., & Montrucchio, L. (2010). Unique solutions for stochastic recursive utilities. Journal of Economic Theory, 145, 1776–1804.

    Article  Google Scholar 

  • Matkowski, J. (1975). Integral solutions of functional equations. Dissertationes Mathematicae, 127, 1–68.

    Google Scholar 

  • Ramsey, F. P. (1928). A mathematical theory of saving. Econometrics Journal, 38, 543–599.

    Google Scholar 

  • Rincón-Zapatero, J. P., & Rodriguez-Palmero, C. (2003). Existence and uniqueness of solutions to the Bellman equation in the unbounded case. Econometrica, 71, 1519–1555.

    Article  Google Scholar 

  • Rincón-Zapatero, J. P., & Rodriguez-Palmero, C. (2009). Corrigendum to “Existence and uniqueness of solutions to the Bellman equation in the unbounded case. Econometrica, 71, 1519–1555 (2003)”. Econometrica, 77, 317–318.

    Article  Google Scholar 

  • Samuelson, P. (1937). A note on measurement of utility. Review of Economic Studies 4, 155–161.

    Article  Google Scholar 

  • Schäl, M. (1975). Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 32, 179–196.

    Article  Google Scholar 

  • Stokey, N. L., Lucas, R. E., & Prescott, E. (1989). Recursive methods in economic dynamics. Cambridge: Harvard University Press.

    Google Scholar 

  • Strauch, R. (1966). Negative dynamic programming. Annals of Mathematical Statistics, 37, 871–890.

    Article  Google Scholar 

  • Thaler, R. H. (1981). Some empirical evidence on dynamic inconsistency. Economics Letters, 8, 201–207.

    Article  Google Scholar 

  • Uzawa, H. (1968). Time preference, the consumption function, and optimum asset holding. In J. N. Wolfe (Ed.), Value, capital and growth: papers in honor of Sir John Hicks (pp. 485–504). Edinburgh: Edinburgh University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej S. Nowak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaśkiewicz, A., Matkowski, J. & Nowak, A.S. On variable discounting in dynamic programming: applications to resource extraction and other economic models. Ann Oper Res 220, 263–278 (2014). https://doi.org/10.1007/s10479-011-0931-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0931-2

Keywords

Navigation