Skip to main content
Log in

Backlogging EOQ model for promotional effort and selling price sensitive demand- an intuitionistic fuzzy approach

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

An intuitionistic fuzzy economic order quantity (EOQ) inventory model with backlogging is investigated using the score functions for the member and non-membership functions. The demand rate is varying with selling price and promotional effort (PE). A crisp model is formulated first. Then, intuitionistic fuzzy set and score function (or net membership function) are applied in the proposed model, considering selling price and PE as fuzzy numbers. To obtain the best inventory policy, ranking index method has been adopted, showing that the score function can maintain the ranking rule also. Moreover, optimization is made under the general fuzzy optimal (GFO) and intuitionistic fuzzy optimal (IFO) policy. Finally, a graphical illustration, numerical examples with sensitivity analysis and conclusion is made to justify the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arcelus, F. J., Pakkala, T. P. M., & Srinivasan, G. (2006). On the interaction between retailers inventory policies and manufacturer trade deals in response to supply-uncertainty occurrences. Annals of Operations Research, 143, 45–58.

    Article  Google Scholar 

  • Atanassov, K. (1986). Intuitionistic fuzzy sets and system. Fuzzy Sets and Systems, 20, 87–96.

    Article  Google Scholar 

  • Bellman, R. E., & Zadeh, L. A. (1970). Decision making in a fuzzy environment. Management Science, 17, B141–B164.

    Article  Google Scholar 

  • Cárdenas-Barrón, L. E. (2007). Optimizing inventory decisions in a multi-stage multi-customer supply chain: a note. Transportation Research. Part E, Logistics and Transportation Review, 43, 647–654.

    Article  Google Scholar 

  • Cárdenas-Barrón, L. E., Wee, H. M., & Blos, M. F. (2011). Solving the vendor–buyer integrated inventory system with arithmetic–geometric inequality. Mathematical and Computer Modelling, 53, 991–997.

    Article  Google Scholar 

  • Cárdenas-Barrón, L. E., Teng, J. T., Treviño-Garza, G., Wee, H. M., & Lou, K. R. (2012a). An improved algorithm and solution on an integrated production-inventory model in a three-layer supply chain. International Journal of Production Economics, 136, 384–388.

    Article  Google Scholar 

  • Cárdenas-Barrón, L. E., Treviño-Garza, G., & Wee, H. M. (2012b). A simple and better algorithm to solve the vendor managed inventory control system of multi-product multi-constraint economic order quantity model. Expert Systems with Applications, 39, 3888–3895.

    Article  Google Scholar 

  • Cárdenas-Barrón, L. E., Taleizadeh, A. A., & Treviño-Garza, G. (2012c). An improved solution to replenishment lot size problem with discontinuous issuing policy and rework, and the multi-delivery policy into economic production lot size problem with partial rework. Expert Systems with Applications, 39, 13540–13546.

    Article  Google Scholar 

  • Chen, S. M., & Tan, J. M. (1994). Handling multi criteria fuzzy decision making problems based on vague set theory. Fuzzy Sets and Systems, 67, 163–172.

    Article  Google Scholar 

  • Dabois, D., Gottwald, S., Hajek, P., Kacprzyk, J., & Prade, H. (2005). Terminological difficulties in fuzzy set theory, the case of “Intuitionistic fuzzy sets”. Fuzzy Sets and Systems, 156, 485–491.

    Article  Google Scholar 

  • Dalen, V. D. (2002). Intuitionistic logic, handbook of philosophical logic (Vol. 5, pp. 1–114). Dordrecht: Kluwer.

    Book  Google Scholar 

  • De, S. K., Kundu, P. K., & Goswami, A. (2003). An economic production quantity inventory model involving fuzzy demand rate and fuzzy deterioration rate. Journal of Applied Mathematics and Computing, 12, 251–260.

    Article  Google Scholar 

  • De, S. K., Kundu, P. K., & Goswami, A. (2008). Economic ordering policy of deteriorated items with shortage and fuzzy cost coefficients for vendor and buyer. Int. J. Fuzzy Systems and Rough Systems, 1, 69–76.

    Google Scholar 

  • Dymova, L., & Sevastjanov, P. (2011). Operations on intuitionistic fuzzy values in multiple criteria decision making. In Scientific Research of the Institute of Mathematics and Computer Science (Vol. 1, pp. 41–48).

    Google Scholar 

  • Gallego, G., & Hu, H. (2004). Optimal policies for Production/Inventory systems with finite capacity and Markov-modulated demand and supply processes. Annals of Operations Research, 126, 21–41.

    Article  Google Scholar 

  • Ganesan, K., & Veeramani, P. (2006). Fuzzy linear programs with trapezoidal fuzzy numbers. Annals of Operations Research, 143, 305–315.

    Article  Google Scholar 

  • Ghosh, S. K., & Chaudhuri, K. S. (2006). An EOQ model with a quadratic demand, time proportional deterioration and shortages in all cycles. International Journal of Systems Science, 37, 663–672.

    Article  Google Scholar 

  • Goyal, S. K., & Gunasekaran, A. (1995). An integrated production-inventory-marketing model for deteriorating items. Computers & Industrial Engineering, 28, 755–762.

    Article  Google Scholar 

  • Ioannou, G., Prastacos, G., & Skintzi, G. (2004). Inventory positioning in multiple product supply chains. Annals of Operations Research, 126, 195–213.

    Article  Google Scholar 

  • Kabiran, A., & Olafsson, S. (2011). Continuous optimization via simulation using golden region search. European Journal of Operational Research, 208, 19–27.

    Article  Google Scholar 

  • Kalpakam, S., & Shanthi, S. (2006). A continuous review perishable system with renewal demands. Annals of Operations Research, 143, 211–225.

    Article  Google Scholar 

  • Kao, C., & Hsu, W. K. (2002). Lot size reorder point inventory model with fuzzy demands. Computers & Mathematics with Applications, 43, 1291–1302.

    Article  Google Scholar 

  • Kaufmann, A., & Gupta, M. (1988). Fuzzy mathematical models in engineering and management science. Amsterdam: North Holland.

    Google Scholar 

  • Krieg, G. N., & Kuhn, H. (2004). Analysis of multi-product kanban systems with state-dependent setups and lost sales. Annals of Operations Research, 125, 141–166.

    Article  Google Scholar 

  • Kumar, R. S., De, S. K., & Goswami, A. (2012). Fuzzy EOQ models with ramp type demand rate, partial backlogging and time dependent deterioration rate. International Journal of Mathematics in Operational Research, 4, 473–502.

    Article  Google Scholar 

  • Lee, H. M., & Yao, J. S. (1999). Economic order quantity in fuzzy sense for inventory without back order model. Fuzzy Sets and Systems, 105, 13–31.

    Article  Google Scholar 

  • Mahapatra, G. S., & Roy, T. K. (2009). Reliability evaluation using triangular intuitionistic fuzzy numbers arithmetic operations. International Journal of Computational and Mathematical Sciences, 3, 225–232.

    Google Scholar 

  • Mishra, S., & Ghosh, A. (2006). Interactive fuzzy programming approach to bi-level quadratic fractional programming problems. Annals of Operations Research, 143, 251–263.

    Article  Google Scholar 

  • Montero, J., Gomez, D., & Bustince, H. (2007). On the relevance of some families of fuzzy sets. Fuzzy Sets and Systems, 158, 2429–2442.

    Article  Google Scholar 

  • Sana, S. S. (2011a). An EOQ model of homogeneous products while demand is salesmen’s initiatives and stock sensitive. Computers & Mathematics with Applications, 62, 577–587.

    Article  Google Scholar 

  • Saleh, M., Oliva, R., Kampmann, C. E., & Davidson, P. I. (2010). A comprehensive analytical approach for policy analysis of system dynamic models. European Journal of Operational Research, 203, 673–683.

    Article  Google Scholar 

  • Sana, S. S. (2011b). An EOQ model for salesmen’s initiatives, stock and price sensitive demand of similar products—a dynamical system. Applied Mathematics and Computation, 218, 3277–3288.

    Article  Google Scholar 

  • Sana, S. S. (2012). The EOQ model—a dynamical system. Applied Mathematics and Computation, 218, 8736–8749.

    Article  Google Scholar 

  • Sana, S. S. (2010). Demand influenced by enterprises’ initiatives—a multi-item EOQ model of deteriorating and ameliorating items. Mathematical and Computer Modelling, 52, 284–302.

    Article  Google Scholar 

  • Sana, S. S., & Chaudhuri, K. S. (2008). An inventory model for stock with advertising sensitive demand. IMA Journal of Management Mathematics, 19, 51–62.

    Article  Google Scholar 

  • Sarkar, B., & Sarkar, S. (2013). An improved inventory model with partial backlogging, time varying deterioration and stock-dependent demand. Economic Modelling, 30, 924–932.

    Article  Google Scholar 

  • Takeuti, G., & Tinani, S. (1984). Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. The Journal of Symbolic Logic, 49, 851–866.

    Article  Google Scholar 

  • Vojosevic, M., Petrovic, D., & Petrovic, R. (1996). EOQ formula when inventory cost is fuzzy. International Journal of Production Economics, 45, 499–504.

    Article  Google Scholar 

  • Wu, K., & Yao, J. S. (2003). Fuzzy inventory with backorder for fuzzy order quantity and fuzzy shortage quantity. European Journal of Operational Research, 150, 320–352.

    Article  Google Scholar 

  • Xie, J., & Neyret, A. (2009). Co-op advertising and pricing models in manufacturer–retailer supply chain. Computers & Industrial Engineering, 56, 1375–1385.

    Article  Google Scholar 

  • Xie, J., & Wei, J. C. (2009). Coordinating advertising and pricing in a manufacturer–retailer channel. European Journal of Operational Research, 197, 785–791.

    Article  Google Scholar 

  • Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information Sciences, 24, 143–161.

    Article  Google Scholar 

  • Yao, J. S., Chang, S. C., & Su, J. S. (2000). Fuzzy inventory without backorder for fuzzy order quantity and fuzzy total demand quantity. Computers & Operations Research, 27, 935–962.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–356.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shib Sankar Sana.

Appendix

Appendix

Here, we shall show that the score (net membership) function follows Yager’s (1981) ranking index method.

We have

(i)

$$\begin{aligned} I ( \rho ) =& \frac{1}{2} \biggl( \delta_{1} + \delta_{3} + \frac{1}{2 \lambda_{1}} - \frac{1}{2 \lambda_{2}} \biggr) \\ =& \frac{1}{4} \biggl[ \frac{ ( \rho_{2} - \rho_{1} ) (\rho_{2} - \rho_{1} ' ) +2 ( \rho_{2}^{2} - \rho_{1} \rho_{1} ' )}{2 \rho_{2} - \rho_{1} - \rho_{1} '} + \frac{ ( \rho_{3} - \rho_{2} ) ( \rho_{3} ' - \rho_{2} ) +2 ( \rho_{3} \rho_{3} ' -\rho_{2}^{2} )}{\rho_{3} + \rho_{3} ' -2 \rho_{2}} \biggr] \end{aligned}$$

Letting \(\rho_{1} ' = \rho_{1}\), \(\rho_{3} ' = \rho_{3}\), in fuzzy sense, we get

$$\begin{aligned} I(\rho) =& \frac{1}{4} \biggl[ \frac{ ( \rho_{2} - \rho_{1} ) ( \rho_{2} - \rho_{1} ) +2 ( \rho_{2}^{2} - \rho_{1}^{2} )}{2 ( \rho_{2} - \rho_{1} )} + \frac{ ( \rho_{3} - \rho_{2} ) ( \rho_{3} - \rho_{2} ) +2 ( \rho_{3}^{2} -\rho_{2}^{2} )}{2 ( \rho_{3} - \rho_{2} )} \biggr] \\ =& \biggl( \frac{ ( \rho_{2} - \rho_{1} ) +2 ( \rho_{2} + \rho_{1} )}{8} + \frac{ ( \rho_{3} - \rho_{2} ) +2 ( \rho_{3} + \rho_{2} )}{8} \biggr) \\ =& \frac{3 \rho_{3} +4 \rho_{2} + \rho_{1}}{8} \xrightarrow{\mathit{yields}} \rho \quad \mbox{when }\rho_{1} = \rho_{2} = \rho_{3} =\rho,\ \mbox{in crisp sense.} \end{aligned}$$

Hence the proof.

Let \(d_{2} = \frac{\tau\rho}{1+\rho}\) then \(\rho= \frac{\tau}{\tau- d_{2}}\).

(ii) So, the net membership is given by

$$\zeta ( d_{2} ) = \left \{ \begin{array}{@{}l@{}} \frac{ [ \frac{\tau}{ ( \tau- d_{2} )} - ( 1+ \rho_{1} ) ]}{\rho_{2} - \rho_{1}} - \frac{ [ ( 1+ \rho_{2} ) - \frac{\tau}{ ( \tau- d_{2} )} ]}{\rho_{2} - \rho_{1} '} \quad \forall d_{2} ' < d_{2} < d_{2}^{''} \\ \frac{ [ ( 1+ \rho_{2} ) - \frac{\tau}{ ( \tau- d_{2} )} ]}{\rho_{3} - \rho_{2}} - \frac{ [ \frac{\tau}{ ( \tau- d_{2} )} - ( 1+ \rho_{3} ' ) ]}{\rho_{3} ' - \rho_{2}} \quad \forall d_{2}^{''} < d_{2} < d_{2}^{'''}\\ 0,\quad \mathrm{elsewhere} \end{array} \right \} $$

Here, \(\frac{ [ \frac{\tau}{ ( \tau- d_{2} )} - ( 1+ \rho_{1} ) ]}{\rho_{2} - \rho_{1}} - \frac{ [ ( 1+ \rho_{2} ) - \frac{\tau}{ ( \tau- d_{2} )} ]}{ \rho_{2} - \rho_{1} '} \geq\alpha\) and \(\frac{ [ ( 1+ \rho_{2} ) - \frac{\tau}{ ( \tau- d_{2} )} ]}{\rho_{3} - \rho_{2}} - \frac{ [ \frac{\tau}{ ( \tau- d_{2} )} - ( 1+ \rho_{3} ' ) ]}{\rho_{3} ' - \rho_{2}} \geq\alpha\), after a little bit calculation, we have

$$d_{2} \geq\tau- \frac{\tau ( \frac{1}{\rho_{2} - \rho_{1}} + \frac{1}{\rho_{2} - \rho_{1} '} )}{\alpha+ ( \frac{1+ \rho_{1}}{\rho_{2} - \rho_{1}} + \frac{1+ \rho_{2}}{\rho_{2} - \rho_{1} '} )}\quad \mbox{and}\quad d_{2} \leq\tau- \frac{\tau ( \frac{1}{\rho_{3} - \rho_{2}} + \frac{1}{\rho_{3} ' - \rho_{2}} )}{ ( \frac{1+ \rho_{1}}{\rho_{3} - \rho_{2}} + \frac{1+ \rho_{2}}{\rho_{3} ' - \rho_{2}} ) -\alpha}, \mathrm{respectively}. $$

Therefore,

$$\begin{aligned} \bigl[ L_{d 2}^{-1} ( \alpha ), R_{d 2}^{-1} (\alpha) \bigr] =& \biggl[ \tau- \frac{\tau ( \frac{1}{\rho_{2} - \rho_{1}} + \frac{1}{\rho_{2} - \rho_{1} '} )}{\alpha+ ( \frac{1+ \rho_{1}}{\rho_{2} - \rho_{1}} + \frac{1+ \rho_{2}}{\rho_{2} - \rho_{1} '} )},\tau- \frac{\tau ( \frac{1}{\rho_{3} - \rho_{2}} + \frac{1}{\rho_{3} ' - \rho_{2}} )}{ ( \frac{1+ \rho_{1}}{\rho_{3} - \rho_{2}} + \frac{1+ \rho_{2}}{\rho_{3} ' - \rho_{2}} ) -\alpha} \biggr]\\ =& \biggl[ \tau- \frac{k_{1}}{\alpha+ k_{2}},\tau- \frac{k_{3}}{ k_{4} -\alpha} \biggr] \end{aligned}$$

where

$$\begin{aligned} &k_{1} =\tau \biggl( \frac{1}{\rho_{2} - \rho_{1}} + \frac{1}{\rho_{2} - \rho_{1} '} \biggr), \qquad k_{2} = \biggl( \frac{1+ \rho_{1}}{\rho_{2} - \rho_{1}} + \frac{1+ \rho_{2}}{\rho_{2} - \rho_{1} '} \biggr),\\ & k_{3} =\tau \biggl( \frac{1}{\rho_{3} - \rho_{2}} + \frac{1}{\rho_{3} ' - \rho_{2}} \biggr)\quad \mbox{and}\quad k_{4} = \biggl( \frac{1+ \rho_{1}}{\rho_{3} - \rho_{2}} + \frac{1+ \rho_{2}}{\rho_{3} ' -\rho_{2}} \biggr) \end{aligned}$$

Now, the indexed value is

$$\begin{aligned} I ( d_{2} ) =& \frac{1}{2} \int_{0}^{1} \bigl[ L_{d 2}^{-1} ( \alpha ) + R_{d 2}^{-1} ( \alpha ) \bigr] d\alpha \\ =& \frac{1}{2} \int_{0}^{1} \biggl[ \tau- \frac{k_{1}}{\alpha+ k_{2}} +\tau- \frac{k_{3}}{k_{4} -\alpha} \biggr] d\alpha \\ =& \frac{1}{2} \biggl[ 2\tau- k_{1} \operatorname{Log}\biggl( \frac{1+ k_{2}}{k_{2}} \biggr) + k_{3} \operatorname{Log}\biggl( \frac{k_{4} -1}{k_{4}} \biggr) \biggr]. \end{aligned}$$

To have a fuzzy value, we have \(\rho_{1} ' \rightarrow \rho_{1}\) and \(\rho_{3} ' \rightarrow \rho_{3}\) those provide

$$\begin{aligned} &k_{1} \rightarrow \biggl( \frac{2\tau}{\rho_{2} - \rho_{1}} \biggr),\qquad k_{2} \rightarrow \biggl( \frac{2+ \rho_{1} + \rho_{2}}{\rho_{2} - \rho_{1}} \biggr),\qquad k_{3} \rightarrow \biggl( \frac{2\tau}{\rho_{3} - \rho_{2}} \biggr)\quad \mbox{and}\\ & k_{4} \rightarrow \biggl( \frac{2+ \rho_{1} + \rho_{2}}{\rho_{3} - \rho_{2}} \biggr). \end{aligned}$$

Therefore, from above, we have

$$I ( d_{2} ) = \frac{1}{2} \biggl[ 2\tau- \frac{2\tau}{\rho_{2} - \rho_{1}} \operatorname{Log}\biggl( 1+ \frac{\rho_{2} - \rho_{1}}{2+ \rho_{2} + \rho_{1}} \biggr) + \frac{2\tau}{\rho_{3} - \rho_{2}} \operatorname{Log}\biggl( 1- \frac{\rho_{3} - \rho_{2}}{2+ \rho_{2} + \rho_{3}} \biggr) \biggr]. $$

The crisp value of d 2 is

$$\begin{aligned} d_{2} =& \lim_{ \substack{ \rho_{1} \rightarrow \rho_{2}\\ \rho_{3} \rightarrow \rho_{2} } } I ( d_{2} ) \\ =& \lim_{\substack{ \rho_{1} \rightarrow \rho_{2}\\ \rho_{3} \rightarrow \rho_{2} } } \biggl[ \tau- \frac{\tau}{\rho_{2} - \rho_{1}} \operatorname{Log}\biggl( 1+ \frac{\rho_{2} - \rho_{1}}{2+ \rho_{1} + \rho_{2}} \biggr) + \frac{\tau}{ \rho_{3} - \rho_{2}} \operatorname{Log}\biggl( 1+ \frac{\rho_{3} - \rho_{2}}{2+ \rho_{2} + \rho_{3}} \biggr) \biggr] \end{aligned}$$

where

$$\begin{aligned} &\lim_{\rho 1 \rightarrow \rho 2} \biggl[ \frac{1}{\rho_{2} - \rho_{1}} \operatorname{Log}\biggl( 1+ \frac{\rho_{2} - \rho_{1}}{2+ \rho_{1} + \rho_{2}} \biggr) \biggr] \\ &\quad= \lim_{\rho 1 \rightarrow \rho 2} \biggl( \frac{1}{2+ \rho_{1} + \rho_{2}} \biggr) \times \lim _{\rho 1 \rightarrow \rho 2} \biggl[ \frac{\operatorname{Log}( 1+ \frac{\rho_{2} - \rho_{1}}{2+ \rho_{1} + \rho_{2}} )}{ ( \rho_{2} - \rho_{1} ) / ( 2+ \rho_{1} + \rho_{2} )} \biggr] = \frac{1}{2 ( 1+ \rho_{2} )} \end{aligned}$$

and

$$\begin{aligned} &\lim_{\rho 3 \rightarrow \rho 2} \biggl[ \frac{1}{\rho_{3} - \rho_{2}} \operatorname{Log}\biggl( 1- \frac{\rho_{3} - \rho_{2}}{2+ \rho_{2} + \rho_{3}} \biggr) \biggr] \\ &\quad = \lim_{\rho 3 \rightarrow \rho 2} \biggl( \frac{-1}{2+ \rho_{2} + \rho_{3}} \biggr) \times \lim _{\rho 3 \rightarrow \rho 2} \biggl[ \frac{\operatorname{Log}( 1- \frac{\rho_{3} - \rho_{2}}{2+ \rho_{2} + \rho_{3}} )}{- ( \rho_{3} - \rho_{2} ) / ( 2+ \rho_{2} + \rho_{3} )} \biggr] = \frac{1}{2 ( 1+ \rho_{2} )}. \end{aligned}$$

Thus

$$\begin{aligned} d_{2} =& \lim_{\substack{ \rho_{1} \rightarrow \rho_{2}\\ \rho_{3} \rightarrow \rho_{2} } } I ( d_{2} ) \\ =& \biggl[ \tau- \frac{\tau}{2 ( 1+ \rho_{2} )} - \frac{\tau}{2 ( 1+ \rho_{2} )} \biggr] \\ =&\tau \biggl[ 1- \frac{1}{1+ \rho_{2}} \biggr] = \frac{\tau \rho_{2}}{1+ \rho_{2}} \rightarrow \frac{\tau\rho}{ 1+\rho} \xrightarrow{\mathit{yields}} \mbox{Crisp value}. \end{aligned}$$

Proceeding this way we can prove the other IFS as well. Hence the Yager’s Ranking method can be applied on net membership function also. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De, S.K., Sana, S.S. Backlogging EOQ model for promotional effort and selling price sensitive demand- an intuitionistic fuzzy approach. Ann Oper Res 233, 57–76 (2015). https://doi.org/10.1007/s10479-013-1476-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1476-3

Keywords

Navigation