Skip to main content
Log in

Bounded and discrete data and Likert scales in data envelopment analysis: application to regional energy efficiency in China

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In data envelopment analysis (DEA), it is usually assumed that all data are continuous and not restricted by upper and/or lower bounds. However, there are situations where data are discrete and/or bounded, and where projections arising from DEA models are required to fall within those bounds. Such situations can be found, for example, in cases where percentage data are present and where projected percentages must not exceed the requisite 100 % limit. Other examples include Likert scale data. Using existing integer DEA approaches as a backdrop, the current paper presents models for dealing with bounded and discrete data. Our proposed models address the issue of constraining DEA projections to fall within imposed bounds. It is shown that Likert scale data can be modeled using the proposed approach. The proposed DEA models are used to evaluate the energy efficiency of 29 provinces in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.

    Article  Google Scholar 

  • Bi, G. B., Song, W., Zhou, P., & Liang, L. (2014). Does environmental regulation affect energy efficiency in China’s thermal power generation? Empirical evidence from a slacks-based DEA model. Energy Policy, 66, 537–546.

    Article  Google Scholar 

  • Bian, Y., & Yang, F. (2010). Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon’s entropy. Energy Policy, 38, 1909–1917.

    Article  Google Scholar 

  • Chang, T.-P., & Hu, J.-L. (2010). Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China. Applied Energy, 87, 3262–3270.

    Article  Google Scholar 

  • Chang, Y.-T., Zhang, N., Danao, D., & Zhang, N. (2013). Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy policy, 58, 277–283.

    Article  Google Scholar 

  • Choi, Y., Zhang, N., & Zhou, P. (2012). Efficiency and abatement costs of energy-related \(\text{ CO }_{2}\) emissions in China: A slacks-based efficiency measure. Applied Energy, 98, 198–208.

    Article  Google Scholar 

  • Cook, W. D., Kress, M., & Seiford, L. (1993). On the use of ordinal data in data envelopment analysis. Journal of the Operational Research Society, 44(2), 133–140.

    Article  Google Scholar 

  • Cook, W. D., Kress, M., & Seiford, L. (1996). Data envelopment analysis in the presence of both quantitative and qualitative factors. Journal of the Operational Research Society, 47, 945–953.

    Article  Google Scholar 

  • Cook, W. D., & Zhu, J. (2006). Rank order data in DEA: A general framework. European Journal of Operational Research, 174, 1021–1038.

    Article  Google Scholar 

  • Cook, W. D., Tone, K., & Zhu, J. (2014). Data envelopment analysis: Prior to choosing a model. OMEGA, 44, 1–4.

    Article  Google Scholar 

  • Cooper, W. W., Park, K. S., & Yu, G. (1999). IDEA and AR-IDEA: Models for dealing with imprecise data in DEA. Management Science, 45(4), 597–607.

    Article  Google Scholar 

  • Cooper, W. W., Park, K. S., & Yu, G. (2001). An illustrative application of IDEA (imprecise data envelopment analysis) to a Korean mobile telecommunication company. Operations Research, 49, 807–820.

    Article  Google Scholar 

  • Cooper, W. W., Pastor, J. T., Borras, F., Aparicio, J., & Pastor, D. (2011). BAM: A bounded adjusted measure of efficiency for use with bounded additive models. Journal of Productivity Analysis, 35(2), 85–94.

    Article  Google Scholar 

  • Du, K. R., Huang, L., & Yu, K. (2014). Sources of the potential \(\text{ CO }_{2}\) emission reduction in China: A nonparametric metafrontier approach. Applied Energy, 115, 491–501.

    Article  Google Scholar 

  • Guo, X.-D., Zhu, L., Fan, Y., & Xie, B.-C. (2011). Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA. Energy Policy, 39, 2352–2360.

    Article  Google Scholar 

  • Honma, S., & Hu, J.-L. (2008). Total-factor energy efficiency of regions in Japan. Energy Policy, 36, 821–833.

    Article  Google Scholar 

  • Hu, J.-L., & Chang, T.-P. (2016). Total-factor energy efficiency and its extensions: Introduction, computation and application. In J. Zhu (Ed.), Data envelopment analysis: A handbook of empirical studies and applications. New York: Springer.

    Google Scholar 

  • Hu, J.-L., & Kao, C.-H. (2007). Efficient energy-saving targets for APEC economies. Energy Policy, 35, 373–382.

    Article  Google Scholar 

  • Hu, J.-L., & Wang, S.-C. (2006). Total-factor energy efficiency of regions in China. Energy Policy, 34, 3206–3217.

    Article  Google Scholar 

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories. Prepared by Task Force on National Greenhouse Gas Inventories. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.

  • Kao, C., & Lin, P.-H. (2011). Qualitative factors in data envelopment analysis: A fuzzy number approach. European Journal of Operational Research, 211, 586–593.

    Article  Google Scholar 

  • Kao, C., & Liu, S.-T. (2000). Fuzzy efficiency measures in data envelopment analysis. Fuzzy Sets and Systems, 113, 427–437.

    Article  Google Scholar 

  • Kuosmanen, T., & Kazemi Matin, R. (2009). Theory of integer-valued data envelopment analysis. European Journal of Operational Research, 192, 658–667.

    Article  Google Scholar 

  • Kuosmanen, T., Keshvaril, A., & Kazemi Matin, R. (2015). Discrete and integer valued inputs and outputs in data envelopment analysis. In J. Zhu (Ed.), Data envelopment analysis: A handbook of models and method. New York: Springer.

  • Li, L.-B., & Hu, J.-L. (2012). Ecological total-factor energy efficiency of regions in China. Energy Policy, 46, 216–224.

    Article  Google Scholar 

  • Lim, S., & Zhu, J. (2013). Incorporating performance measures with target levels in data envelopment analysis. European Journal of Operational Research, 230(3), 634–642.

    Article  Google Scholar 

  • Liu, C.-H., Lin, S.-J., & Lewis, C. (2010). Evaluation of thermal power plant operational performance in Taiwan by data envelopment analysis. Energy Policy, 38, 1049–1058.

    Article  Google Scholar 

  • Patterson, M. G. (1996). What is energy efficiency? Concepts, indicators, and methodological issues. Energy Policy, 24, 377–390.

    Article  Google Scholar 

  • Shi, G.-M., Bi, J., & Wang, J.-N. (2010). Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs. Energy Policy, 38, 6172–6179.

    Article  Google Scholar 

  • Wang, K., Lu, B., & Wei, Y. M. (2013). China’s regional energy and environmental efficiency: A range-adjusted measure based analysis. Applied Energy, 112, 1403–1415.

    Article  Google Scholar 

  • Wu, F., Fan, L. W., Zhou, P., & Zhou, D. Q. (2012). Industrial energy efficiency with \(\text{ CO }_{2}\) emissions in China: A nonparametric analysis. Energy Policy, 49, 164–172.

    Article  Google Scholar 

  • Zhang, N., Kong, F. B., Choi, Y., & Zhou, P. (2014). The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants. Energy Policy, 70, 193–200.

    Article  Google Scholar 

  • Zhu, J. (2003). Imprecise data envelopment analysis (IDEA): A review and improvement with an application. European Journal of Operational Research, 144, 513–529.

    Article  Google Scholar 

  • Zhu, J. (2014). Quantitative models for performance evaluation and benchmarking: Data envelopment analysis with spreadsheets (3rd ed.). New York: Springer.

    Google Scholar 

  • Zhou, Y., Xing, X., Fang, K., Liang, D., & Xu, C. (2013). Environmental efficiency analysis of power industry in China based on an entropy SBM model. Energy Policy, 57, 68–75.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank two anonymous reviewers for their helpful comments and suggestions. This paper is partially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (China). Dr. Juan Du thanks the support by the National Natural Science Foundation of China (Grant No. 71471133 & 71432007) and the Youth Project of Humanities and Social Science funded by Tongji University (Grant No. 20141872). This paper was finished while Ya Chen was a visiting Ph.D. student at Worcester Polytechnic Institute with support from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Zhu.

Appendices

Appendix 1: Dual model

The dual to model (1) may reveal returns to scale (RTS) nature with bounded data. Note that Fig. 1 indicates that a DMU is being projected onto the DRS frontier. The dual to model (1) can be written as

$$\begin{aligned}&\alpha _o^{1*} =\min \sum \limits _{i=1}^m {v_i x_{io} } +\sum \limits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {w_{r_{\textit{Bnd}} } U_{r_{\textit{Bnd}} } } -\sum \limits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\hat{{w}}_{r_{\textit{Bnd}} } L_{r_{\textit{Bnd}} } } \nonumber \\&\begin{array}{ll} s. t.&{}\sum \limits _{i=1}^m {v_i x_{ij} } -\sum \limits _{r=1}^s {u_r y_{\textit{rj}} } \ge 0, \quad j=1,\ldots ,n \\ &{}\sum \limits _{r=1}^s {u_r y_{ro} } +\sum \limits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } { \left( { w_{r_{\textit{Bnd}} } -\hat{{w}}_{r_{\textit{Bnd}} } } \right) y_{r_{\textit{Bnd}} o} } =1 \\ &{}v_i ,u_r ,w_{r_{\textit{Bnd}} } ,\hat{{w}}_{r_{\textit{Bnd}} } \ge 0\, \quad i=1,\ldots ,m, \quad r=1,\ldots ,s, r_{\textit{Bnd}} \in O_{\textit{Bnd}} \\ \end{array} \end{aligned}$$
(6)

Model (6) can be converted into the following ratio model

$$\begin{aligned}&\alpha _o^{1*} =\min \frac{\sum \nolimits _{i=1}^m {\upsilon _i x_{io} } +\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\omega _{r_{\textit{Bnd}} } U_{r_{\textit{Bnd}} } } -\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\hat{{\omega }}_{r_{\textit{Bnd}} } L_{r_{\textit{Bnd}} } } }{\sum \nolimits _{r=1}^s {\mu _r y_{ro} } +\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } { \left( { \omega _{r_{\textit{Bnd}} } -\hat{{\omega }}_{r_{\textit{Bnd}} } } \right) y_{r_{\textit{Bnd}} o} } } \nonumber \\&\begin{array}{ll} s. t.&{}\sum \limits _{i=1}^m {\upsilon _i x_{ij} } -\sum \limits _{r=1}^s {\mu _r y_{rj} } \ge 0, \quad j=1,\ldots ,n \\ &{}\sum \limits _{r=1}^s {\mu _r y_{ro} } +\sum \limits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } { \left( { \omega _{r_{\textit{Bnd}} } -\hat{{\omega }}_{r_{\textit{Bnd}} } } \right) y_{r_{\textit{Bnd}} o} } \ge 0 \\ &{}\upsilon _i ,\mu _r ,\omega _{r_{\textit{Bnd}} } ,\hat{{\omega }}_{r_{\textit{Bnd}} } \ge 0,\quad i=1,\ldots ,m, \quad r=1,\ldots ,s, r_{\textit{Bnd}} \in O_{\textit{Bnd}} \\ \end{array} \end{aligned}$$
(7)

To avoid possible zero denominator in the objective function, we use a non-Archimedean positive infinitesimal \(\varepsilon \) to restrict it to be positive.

$$\begin{aligned}&\alpha _o^{1*} =\min \frac{\sum \nolimits _{i=1}^m {\upsilon _i x_{io} } +\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\omega _{r_{\textit{Bnd}} } U_{r_{\textit{Bnd}} } } -\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\hat{{\omega }}_{r_{\textit{Bnd}} } L_{r_{\textit{Bnd}} } } }{\sum \nolimits _{r=1}^s {\mu _r y_{ro} } +\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } { \left( { \omega _{r_{\textit{Bnd}} } -\hat{{\omega }}_{r_{\textit{Bnd}} } } \right) y_{r_{\textit{Bnd}} o} } } \nonumber \\&\begin{array}{ll} s. t.&{}\sum \limits _{i=1}^m {\upsilon _i x_{ij} } -\sum \limits _{r=1}^s {\mu _r y_{rj} } \ge 0, \quad j=1,\ldots ,n \\ &{}\sum \limits _{r=1}^s {\mu _r y_{ro} } +\sum \limits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } { \left( { \omega _{r_{\textit{Bnd}} } -\hat{{\omega }}_{r_{\textit{Bnd}} } } \right) y_{r_{\textit{Bnd}} o} } \ge \varepsilon \\ &{}\upsilon _i ,\mu _r ,\omega _{r_{\textit{Bnd}} } ,\hat{{\omega }}_{r_{\textit{Bnd}} } \ge 0,\quad i=1,\ldots ,m, \quad \textit{Bnd}r=1,\ldots ,s, r_{\textit{Bnd}} \in O_{\textit{Bnd}} \\ \end{array} \end{aligned}$$
(8)

If we let \(\hat{{\mu }}_{r_{Unb} } =\mu _{r_{Unb} } ,r_{Unb} \in O_{Unb} \) and \(\hat{{\mu }}_{r_{\textit{Bnd}} } =\mu _{r_{\textit{Bnd}} } +\omega _{r_{\textit{Bnd}} } -\hat{{\omega }}_{r_{\textit{Bnd}} } ,r_{\textit{Bnd}} \in O_{\textit{Bnd}} \), model (8) becomes

$$\begin{aligned}&\alpha _o^{1*} =\min \frac{\sum \nolimits _{i=1}^m {\upsilon _i x_{io} } +\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\omega _{r_{\textit{Bnd}} } U_{r_{\textit{Bnd}} } } -\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\hat{{\omega }}_{r_{\textit{Bnd}} } L_{r_{\textit{Bnd}} } } }{\sum \nolimits _{r=1}^s {\hat{{\mu }}_r y_{ro} } } \nonumber \\&\begin{array}{ll} s. t.&{}\sum \limits _{i=1}^m {\upsilon _i x_{ij} } -\sum \limits _{r=1}^s {\hat{{\mu }}_r y_{rj} } +\sum \limits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } { \left( { \omega _{r_{\textit{Bnd}} } -\hat{{\omega }}_{r_{\textit{Bnd}} } } \right) y_{r_{\textit{Bnd}} j} } \ge 0, \quad j=1,\ldots ,n \\ &{}\sum \limits _{r=1}^s {\hat{{\mu }}_r y_{ro} } \ge \varepsilon \\ &{}\hat{{\mu }}_{r_{\textit{Bnd}} } -\omega _{r_{\textit{Bnd}} } +\hat{{\omega }}_{r_{\textit{Bnd}} } \ge 0,r_{\textit{Bnd}} \in O_{\textit{Bnd}} \\ &{}\upsilon _i ,\hat{{\mu }}_{r_{Unb} } ,\omega _{r_{\textit{Bnd}} } ,\hat{{\omega }}_{r_{\textit{Bnd}} } \ge 0\quad \,i=1,\ldots ,m, r_{Unb} \in O_{Unb} , r_{\textit{Bnd}} \in O_{\textit{Bnd}} \\ \end{array} \end{aligned}$$
(9)

Note that model (9) is very similar to the ratio form of variable returns to scale (VRS) model (Banker et al. 1984).

Note that under VRS, the bounded constraint of \(L_{r_{\textit{Bnd}} } \le \alpha y_{r_{\textit{Bnd}} o} \le U_{r_{\textit{Bnd}} } (r_{\textit{Bnd}} \in O_{\textit{Bnd}} )\) is not required. This is because the convexity constraint of \(\sum \limits _{j=1}^n {\lambda _j } =1\) guarantees the projection \(\hat{{y}}_{r_{\textit{Bnd}} j} \) to be within the range of current output levels. Although under CRS (constant returns to scale), model (9) indicates that model (1) behaves like a VRS model. Note that \(\sum \limits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\omega _{r_{\textit{Bnd}} } U_{r_{\textit{Bnd}} } } -\sum \limits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\hat{{\omega }}_{r_{\textit{Bnd}} } L_{r_{\textit{Bnd}} } } \) in model (9) can be regarded as a value for the “free” variable in the VRS ratio model. Note also that, for example, the non-decreasing RTS (NDRS) or non-increasing RTS (NIRS) model restricts the VRS “free” variable to be either positive or negative.

Furthermore, if we only impose the upper bounds, \(\alpha y_{r_{\textit{Bnd}} o} \le U_{r_{\textit{Bnd}} } ,r_{\textit{Bnd}} \in O_{\textit{Bnd}} \) in the CRS model (1), the ratio form of its dual model can be expressed as

$$\begin{aligned}&\min \frac{\sum \nolimits _{i=1}^m {\upsilon _i x_{io} } +\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\omega _{r_{\textit{Bnd}} } U_{r_{\textit{Bnd}} } } }{\sum \nolimits _{r=1}^s {\mu _r y_{ro} } +\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\omega _{r_{\textit{Bnd}} } y_{r_{\textit{Bnd}} o} } } \nonumber \\&\begin{array}{ll} s. t.&{}\sum \limits _{i=1}^m {\upsilon _i x_{ij} } -\sum \limits _{r=1}^s {\mu _r y_{rj} } \ge 0, \quad j=1,\ldots ,n \\ &{}\upsilon _i ,\mu _r, \omega _{r_{\textit{Bnd}} } \ge 0,\, \quad i=1,\ldots ,m, \quad r=1,\ldots ,s, r_{\textit{Bnd}} \in O_{\textit{Bnd}} \end{array} \end{aligned}$$
(10)

With non-Archimedean positive infinitesimal \(\varepsilon \), model (10) is converted to

$$\begin{aligned}&\min \frac{\sum \nolimits _{i=1}^m {\upsilon _i x_{io} } +\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\omega _{r_{\textit{Bnd}} } U_{r_{\textit{Bnd}} } } }{\sum \limits _{r=1}^s {\mu _r y_{ro} } +\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\omega _{r_{\textit{Bnd}} } y_{r_{\textit{Bnd}} o} } } \nonumber \\&\begin{array}{ll} s. t.&{}\sum \limits _{i=1}^m {\upsilon _i x_{ij} } -\sum \limits _{r=1}^s {\mu _r y_{rj} } \ge 0, \quad j=1,\ldots ,n \\ &{}\upsilon _i ,\mu _r ,\omega _{r_{\textit{Bnd}} } \ge \varepsilon \, \quad i=1,\ldots ,m, \quad r=1,\ldots ,s, r_{\textit{Bnd}} \in O_{\textit{Bnd}} \end{array} \end{aligned}$$
(11)

If we let \(\hat{{\mu }}_{r_{Unb} } =\mu _{r_{Unb} } ,r_{Unb} \in O_{Unb} \) and \(\hat{{\mu }}_{r_{\textit{Bnd}} } =\mu _{r_{\textit{Bnd}} } +\omega _{r_{\textit{Bnd}} } ,r_{\textit{Bnd}} \in O_{\textit{Bnd}} \), model (11) becomes

$$\begin{aligned}&\min \frac{\sum \nolimits _{i=1}^m {\upsilon _i x_{io} } +\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\omega _{r_{\textit{Bnd}} } U_{r_{\textit{Bnd}} } } }{\sum \nolimits _{r=1}^s {\hat{{\mu }}_r y_{ro} } } \nonumber \\&\begin{array}{ll} s. t.&{}\sum \limits _{i=1}^m {\upsilon _i x_{ij} } -\sum \limits _{r=1}^s {\hat{{\mu }}_r y_{rj} } +\sum \limits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\omega _{r_{\textit{Bnd}} } y_{r_{\textit{Bnd}} j} } \ge 0, \quad j=1,\ldots ,n \\ &{}\hat{{\mu }}_{r_{\textit{Bnd}} } -\omega _{r_{\textit{Bnd}} } \ge \varepsilon ,r_{\textit{Bnd}} \in O_{\textit{Bnd}} \\ &{}\upsilon _i ,\hat{{\mu }}_{r_{Unb} } ,\omega _{r_{\textit{Bnd}} } \ge \varepsilon ,\quad i=1,\ldots ,m, r_{Unb} \in O_{Unb} , r_{\textit{Bnd}} \in O_{\textit{Bnd}} \\ \end{array} \end{aligned}$$
(12)

It can be seen that \(\sum \nolimits _{r_{\textit{Bnd}} \in O_{\textit{Bnd}} } {\omega _{r_{\textit{Bnd}} } U_{r_{\textit{Bnd}} } } \) is always non-negative, indicating that model (12) may exhibit DRS.

Appendix 2: Input orientation

Assume some inputs are in a form of non-continuous data, and denote this type of inputs by \(I_{\textit{Int}} \subseteq \left\{ { 1,2,\ldots ,m} \right\} \), and its complement by \(I_{Cont} \), where \(I_{Cont} \cup I_{\textit{Int}} =\left\{ { 1,2,\ldots ,m} \right\} \). Denote the sets of inputs with bounded data and Likert scales as \(I_{\textit{Bnd}} \subseteq \left\{ { 1,2,\ldots ,m} \right\} \) and \(I_{\textit{Lik}} \subseteq \left\{ { 1,2,\ldots ,m} \right\} \), respectively. We use subscripts \(i_{\textit{Bnd}} \) (in \(x_{i_{\textit{Bnd}} j} )\) and \(i_{\textit{Int}} \) (in \(x_{i_{\textit{Int}} j}\)) to denote the inputs in subsets \(I_{\textit{Bnd}} \) and \(I_{\textit{Int}} \), respectively. The input-oriented model for bounded and discrete data and Likert scales is developed as

$$\begin{aligned}&\min \frac{1}{m} \sum \nolimits _{i=1}^m {\alpha _i } \nonumber \\&\begin{array}{ll} s. t.&{}\sum \limits _{j=1}^n {\lambda _j \,x_{ij} } \le \tilde{x}_{io}, \quad i=1,\ldots ,m \\ &{}\tilde{x}_{io} \le \alpha _i x_{io}, \quad i=1,\ldots ,m \\ &{}L_{i_{\textit{Bnd}} } \le \tilde{x}_{{i_{\textit{Bnd}}}^{o}} \le U_{i_{\textit{Bnd}} } , i_{\textit{Bnd}} \in I_{\textit{Bnd}} \\ &{}\tilde{x}_{i_{\textit{Int}} o} integer, i_{\textit{Int}} \in I_{\textit{Int}} \\ &{}1\le \tilde{x}_{{i_{\textit{Lik}}}^{o}} \le L, i_{\textit{Lik}} \in I_{Lik} \\ &{}\tilde{x}_{{i_{\textit{Lik}}}^{o}} integer, i_{\textit{Lik}} \in I_{Lik} \\ &{}\sum \limits _{j=1}^n {\lambda _j \,y_{rj} } \ge y_{ro}, \quad r=1,\ldots ,s \\ &{}\lambda _j \ge 0, \quad j=1,\ldots ,n \end{array} \end{aligned}$$
(13)

where \(\tilde{x}_{i_{\textit{Int}} o} , i_{\textit{Int}} \in I_{\textit{Int}} \) are integer variables. Note that \(I_{\textit{Int}} \) and \(I_{\textit{Bnd}} \) are permitted to share common elements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Cook, W.D., Du, J. et al. Bounded and discrete data and Likert scales in data envelopment analysis: application to regional energy efficiency in China. Ann Oper Res 255, 347–366 (2017). https://doi.org/10.1007/s10479-015-1827-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1827-3

Keywords

Navigation