Skip to main content
Log in

A new data envelopment analysis based approach for fixed cost allocation

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In many real applications, there exist situations where some independent and decentralized entities will construct a common platform for production processes. A natural and essential problem for the common platform is to allocate the fixed cost or common revenue across these entities in an equitable way. Since there is no powerful central decision maker, each decision-making unit (DMU) might propose an allocation scheme that will favor itself, giving itself a minimal cost and/or a maximal revenue. It is clear that such allocations are egoistic and unacceptable to all DMUs except for the distributing DMU. In this paper, we will address the fixed cost allocation problem in this decentralized environment. For this purpose, we suggest a non-egoistic principle which states that each DMU should propose its allocation proposal in such a way that the maximal cost would be allocated to itself. Further, a preferred allocation scheme should assign each DMU at most its non-egoistic allocation and lead to efficiency scores at least as high as the efficiency scores based on non-egoistic allocations. To this end, we integrate a goal programming method with data envelopment analysis methodology to propose a new model under a set of common weights. The final allocation scheme is determined in such a way that the efficiency scores are maximized for all DMUs through minimizing the total deviation to goal efficiencies. Finally, both a numerical example from prior literature and an empirical study of nine truck fleets are provided to demonstrate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amirteimoori, A., & Kordrostami, S. (2005). Allocating fixed costs and target setting: A DEA-based approach. Applied Mathematics and Computation, 171(1), 136–151.

    Article  Google Scholar 

  • Amirteimoori, A., & Tabar, M. M. (2010). Resource allocation and target setting in data envelopment analysis. Expert Systems with Applications, 37(4), 3036–3039.

    Article  Google Scholar 

  • An, Q., Chen, H., Wu, J., & Liang, L. (2015). Measuring slacks-based efficiency for commercial banks in China by using a two-stage DEA model with undesirable output. Annals of Operations Research, 235(1), 13–35.

    Article  Google Scholar 

  • Anderson, T. R., & Sharp, G. P. (1997). A new measure of baseball batters using DEA. Annals of Operations Research, 73, 141–155.

    Article  Google Scholar 

  • Asmild, M., Paradi, J. C., & Pastor, J. T. (2009). Centralized resource allocation BCC models. Omega, 37(1), 40–49.

    Article  Google Scholar 

  • Avellar, J. G., Milioni, A. Z., & Rabello, T. N. (2007). Spherical frontier DEA model based on a constant sum of inputs. Journal of the Operational Research Society, 58(9), 1246–1251.

    Article  Google Scholar 

  • Avellar, J. G., Milioni, A. Z., Rabello, T. N., & Simão, H. P. (2010). On the redistribution of existing inputs using the spherical frontier DEA model. Pesquisa Operacional, 30(1), 1–14.

    Article  Google Scholar 

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.

    Article  Google Scholar 

  • Beasley, J. E. (2003). Allocating fixed costs and resources via data envelopment analysis. European Journal of Operational Research, 147(1), 198–216.

    Article  Google Scholar 

  • Bougnol, M. L., & Dulá, J. H. (2006). Validating DEA as a ranking tool: An application of DEA to assess performance in higher education. Annals of Operations Research, 145(1), 339–365.

    Article  Google Scholar 

  • Butler, T. W., & Li, L. (2005). The utility of returns to scale in DEA programming: An analysis of Michigan rural hospitals. European Journal of Operational Research, 161(2), 469–477.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  Google Scholar 

  • Chen, Y., Wang, J., Zhu, J., Sherman, H. D., & Chou, S. Y. (2017). How the Great Recession affects performance: a case of Pennsylvania hospitals using DEA. Annals of Operations Research. https://doi.org/10.1007/s1047.

    Article  Google Scholar 

  • Cook, W. D., & Kress, M. (1999). Characterizing an equitable allocation of shared costs: A DEA approach. European Journal of Operational Research, 119(3), 652–661.

    Article  Google Scholar 

  • Cook, W. D., & Zhu, J. (2005). Allocation of shared costs among decision making units: A DEA approach. Computers & Operations Research, 32(8), 2171–2178.

    Article  Google Scholar 

  • Cooper, W. W., Seiford, L. M., & Zhu, J. (2011). Data envelopment analysis: History, models, and interpretations. In W. W. Cooper, L. M. Seiford, & J. Zhu (Eds.), Handbook on data envelopment analysis (pp. 1–39). US: Springer.

    Chapter  Google Scholar 

  • Ding, T., Chen, Y., Wu, H., & Wei, Y. (2017). Centralized fixed cost and resource allocation considering technology heterogeneity: A DEA approach. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2414-6.

    Article  Google Scholar 

  • Du, J., Cook, W. D., Liang, L., & Zhu, J. (2014). Fixed cost and resource allocation based on DEA cross-efficiency. European Journal of Operational Research, 235(1), 206–214.

    Article  Google Scholar 

  • Emrouznejad, A., Parker, B. R., & Tavares, G. (2008). Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA. Socio-Economic Planning Sciences, 42(3), 151–157.

    Article  Google Scholar 

  • Emrouznejad, A., & Yang, G. L. (2016a). A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries. Energy, 115, 840–856.

    Article  Google Scholar 

  • Emrouznejad, A., & Yang, G. L. (2016b). CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index. Energy Policy, 96, 397–410.

    Article  Google Scholar 

  • Emrouznejad, A., & Yang, G. L. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4–8.

    Article  Google Scholar 

  • Fang, L. (2013). A generalized DEA model for centralized resource allocation. European Journal of Operational Research, 228(2), 405–412.

    Article  Google Scholar 

  • Fang, L. (2015). Centralized resource allocation based on efficiency analysis for step-by-step improvement paths. Omega, 51, 24–28.

    Article  Google Scholar 

  • Fang, L. (2016). Centralized resource allocation DEA models based on revenue efficiency under limited information. Journal of the Operational Research Society, 67(7), 945–952.

    Article  Google Scholar 

  • Fang, L., & Li, H. (2015). Centralized resource allocation based on the cost–revenue analysis. Computers & Industrial Engineering, 85, 395–401.

    Article  Google Scholar 

  • Fang, L., & Zhang, C. Q. (2008). Resource allocation based on the DEA model. Journal of the Operational Research Society, 59(8), 1136–1141.

    Article  Google Scholar 

  • Guedes, E. C. C., Milioni, A. Z., de Avellar, J. V. G., & Silva, R. C. (2012). Adjusted spherical frontier model: allocating input via parametric DEA. Journal of the Operational Research Society, 63(3), 406–417.

    Article  Google Scholar 

  • Hatami-Marbini, A., Tavana, M., Agrell, P. J., Lotfi, F. H., & Beigi, Z. G. (2015). A common-weights DEA model for centralized resource reduction and target setting. Computers & Industrial Engineering, 79, 195–203.

    Article  Google Scholar 

  • Hosseinzadeh Lotfi, F., Hatami-Marbini, A., Agrell, P. J., Aghayi, N., & Gholami, K. (2013). Allocating fixed resources and setting targets using a common-weights DEA approach. Computers & Industrial Engineering, 64(2), 631–640.

    Article  Google Scholar 

  • Hosseinzadeh Lotfi, F., Nematollahi, N., Behzadi, M. H., Mirbolouki, M., & Moghaddas, Z. (2012). Centralized resource allocation with stochastic data. Journal of Computational and Applied Mathematics, 236(7), 1783–1788.

    Article  Google Scholar 

  • Hosseinzadeh Lotfi, F., Noora, A. A., Jahanshahloo, G. R., Gerami, J., & Mozaffari, M. R. (2010). Centralized resource allocation for enhanced Russell models. Journal of Computational and Applied Mathematics, 235(1), 1–10.

    Article  Google Scholar 

  • Jahanshahloo, G. R., Lotfi, F. H., Shoja, N., & Sanei, M. (2004). An alternative approach for equitable allocation of shared costs by using DEA. Applied Mathematics and Computation, 153(1), 267–274.

    Article  Google Scholar 

  • Jahanshahloo, G. R., Sadeghi, J., & Khodabakhshi, M. (2017). Proposing a method for fixed cost allocation using DEA based on the efficiency invariance and common set of weights principles. Mathematical Methods of Operations Research, 85(2), 223–240.

    Article  Google Scholar 

  • Jouida, S. B., Krichen, S., & Klibi, W. (2017). Coalition-formation problem for sourcing contract design in supply networks. European Journal of Operational Research, 257(2), 539–558.

    Article  Google Scholar 

  • Khodabakhshi, M., & Aryavash, K. (2014). The fair allocation of common fixed cost or revenue using DEA concept. Annals of Operations Research, 214(1), 187–194.

    Article  Google Scholar 

  • Lei, X., Li, Y., Xie, Q., & Liang, L. (2015). Measuring Olympics achievements based on a parallel DEA approach. Annals of Operations Research, 226(1), 379–396.

    Article  Google Scholar 

  • Li, F., Liang, L., Li, Y., & Emrouznejad, A. (2018a). An alternative approach to decompose the potential gains from mergers. Journal of the Operational Research Society. https://doi.org/10.1080/01605682.2017.1409867.

  • Li, F., Song, J., Dolgui, A., & Liang, L. (2017). Using common weights and efficiency invariance principles for resource allocation and target setting. International Journal of Production Research, 55(17), 4982–4997.

    Article  Google Scholar 

  • Li, F., Zhu, Q., & Chen, Z. (2018b). Allocating a fixed cost across the decision making units with two-stage network structures. Omega. https://doi.org/10.1016/j.omega.2018.02.009.

  • Li, F., Zhu, Q., & Liang, L. (2018c). Allocating a fixed cost based on a DEA-game cross efficiency approach. Expert Systems with Applications, 96, 196–207.

    Article  Google Scholar 

  • Li, F., Zhu, Q., & Zhuang, J. (2018d). Analysis of fire protection efficiency in the United States: A two-stage DEA-based approach. OR Spectrum, 40(1), 23–68.

    Article  Google Scholar 

  • Li, Y., Yang, M., Chen, Y., Dai, Q., & Liang, L. (2013). Allocating a fixed cost based on data envelopment analysis and satisfaction degree. Omega, 41(1), 55–60.

    Article  Google Scholar 

  • Li, Y., Yang, F., Liang, L., & Hua, Z. (2009). Allocating the fixed cost as a complement of other cost inputs: A DEA approach. European Journal of Operational Research, 197(1), 389–401.

    Article  Google Scholar 

  • Liang, L., Yang, F., Cook, W. D., & Zhu, J. (2006). DEA models for supply chain efficiency evaluation. Annals of Operations Research, 145(1), 35–49.

    Article  Google Scholar 

  • Lin, R. (2011a). Allocating fixed costs or resources and setting targets via data envelopment analysis. Applied Mathematics Computation, 217(13), 6349–6358.

    Article  Google Scholar 

  • Lin, R. (2011b). Allocating fixed costs and common revenue via data envelopment analysis. Applied Mathematics and Computation, 218(7), 3680–3688.

    Article  Google Scholar 

  • Lin, R., & Chen, Z. (2016). Fixed input allocation methods based on super CCR efficiency invariance and practical feasibility. Applied Mathematical Modelling, 40(9), 5377–5392.

    Article  Google Scholar 

  • Lin, R., Peng, Y. Y. (2011). A fixed cost allocation approach with DEA super efficiency invariance. In International conference on electronics, communications and control (ICECC), 2011 (pp. 622–625). IEEE.

  • Lozano, S. (2014). Nonradial approach to allocating fixed costs and common revenue using centralized DEA. International Journal of Information Technology & Decision Making, 13(01), 29–46.

    Article  Google Scholar 

  • Lozano, S., & Adenso-Diaz, B. (2017). Network DEA-based biobjective optimization of product flows in a supply chain. Annals of Operations Research. https://doi.org/10.1007/s1047.

    Article  Google Scholar 

  • Lozano, S., & Villa, G. (2004). Centralized resource allocation using data envelopment analysis. Journal of Productivity Analysis, 22(1), 143–161.

    Article  Google Scholar 

  • Lozano, S., & Villa, G. (2005). Centralized DEA models with the possibility of downsizing. Journal of the Operational Research Society, 56(4), 357–364.

    Article  Google Scholar 

  • Lozano, S., Villa, G., & Adenso-Dıaz, B. (2004). Centralised target setting for regional recycling operations using DEA. Omega, 32(2), 101–110.

    Article  Google Scholar 

  • Lozano, S., Villa, G., & Brännlund, R. (2009). Centralised reallocation of emission permits using DEA. European Journal of Operational Research, 193(3), 752–760.

    Article  Google Scholar 

  • Lozano, S., Villa, G., & Canca, D. (2011). Application of centralised DEA approach to capital budgeting in Spanish ports. Computers & Industrial Engineering, 60(3), 455–465.

    Article  Google Scholar 

  • Milioni, A. Z., de Avellar, J. V. G., & Gomes, E. G. (2011a). An ellipsoidal frontier model: Allocating input via parametric DEA. European Journal of Operational Research, 209(2), 113–121.

    Article  Google Scholar 

  • Milioni, A. Z., de Avellar, J. V. G., Rabello, T. N., & De Freitas, G. M. (2011b). Hyperbolic frontier model: A parametric DEA approach for the distribution of a total fixed output. Journal of the Operational Research Society, 62(6), 1029–1037.

    Article  Google Scholar 

  • Mostafaee, A. (2013). An equitable method for allocating fixed costs by using data envelopment analysis. Journal of the Operational Research Society, 64(3), 326–335.

    Article  Google Scholar 

  • Sherman, H. D., & Zhu, J. (2006). Benchmarking with quality-adjusted DEA (Q-DEA) to seek lower-cost high-quality service: Evidence from a US bank application. Annals of Operations Research, 145(1), 301–319.

    Article  Google Scholar 

  • Si, X., Liang, L., Jia, G., Yang, L., Wu, H., & Li, Y. (2013). Proportional sharing and DEA in allocating the fixed cost. Applied Mathematics and Computation, 219(12), 6580–6590.

    Article  Google Scholar 

  • Silva, R. C., & Milioni, A. Z. (2012). The adjusted spherical frontier model with weight restrictions. European Journal of Operational Research, 220(3), 729–735.

    Article  Google Scholar 

  • Silva, R. C., Milioni, A. Z., & Teixeira, J. E. (2017). The general hyperbolic frontier model: Establishing fair output levels via parametric DEA. Journal of the Operational Research Society. https://doi.org/10.1057/s41274-017-0278-4.

    Article  Google Scholar 

  • Wu, J., Zhu, Q., Cook, W. D., & Zhu, J. (2016). Best cooperative partner selection and input resource reallocation using DEA. Journal of the Operational Research Society, 67(9), 1221–1237.

    Article  Google Scholar 

  • Yang, G. L., Yang, J. B., Xu, D. L., & Khoveyni, M. (2017). A three-stage hybrid approach for weight assignment in MADM. Omega, 71, 93–105.

    Article  Google Scholar 

  • Yang, F., Yuan, Q., Du, S., & Liang, L. (2016). Reserving relief supplies for earthquake: a multi-attribute decision making of China Red Cross. Annals of Operations Research, 247(2), 759–785.

    Article  Google Scholar 

  • Yu, M. M., Chen, L. H., & Hsiao, B. (2016). A fixed cost allocation based on the two-stage network data envelopment approach. Journal of Business Research, 69(5), 1817–1822.

    Article  Google Scholar 

  • Zhu, W., Zhang, Q., & Wang, H. (2017). Fixed costs and shared resources allocation in two-stage network DEA. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2599-8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor of Annals of Operations Research and two anonymous referees for their kind work and valuable suggestions. This research was financially supported by the Science Funds for Creative Research Groups of the National Natural Science Foundation of China (No. 71121061), the Fund for International Cooperation and Exchange of the National Natural Science Foundation of China (No. 71110107024), the National Natural Science Foundation of China (Nos. 71271196 and 71671172), the Youth Innovation Promotion Association of Chinese Academy of Sciences (CX2040160004), and the Science Funds for Creative Research Groups of University of Science and Technology of China (No. WK2040160008). This paper was finished when Feng Li was visiting the State University of New York at Buffalo with the financial support from the China Scholarship Council (No. 201606340017), and Qingyuan Zhu was visiting University of Illinois at Urbana-Champaign with financial support from the China Scholarship Council (No. 201606340054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyuan Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhu, Q. & Liang, L. A new data envelopment analysis based approach for fixed cost allocation. Ann Oper Res 274, 347–372 (2019). https://doi.org/10.1007/s10479-018-2819-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2819-x

Keywords

Navigation