Skip to main content
Log in

Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Taking into account isotope 13C value a mathematical model was developed to describe the dynamics of methanogenic population during mesophilic anaerobic digestion of putrescible solid waste and waste imitating Chinese municipal solid waste. Three groups of methanogens were considered in the model including unified hydrogenotrophic methanogens and two aceticlastic methanogens Methanosaeta sp. and Methanosarcina sp. It was assumed that Methanosaeta sp. and Methanosarcina sp. are inhibited by high volatile fatty acids concentration. The total organic and inorganic carbon concentrations, methane production, methane and carbon dioxide partial pressures as well as the isotope 13C incorporation in PSW and CMSW were used for the model calibration and validation. The model showed that in spite of the high initial biomass concentration of Methanosaeta sp. Methanosarcina sp. became the dominant aceticlastic methanogens in the system. This prediction was confirmed by FISH. It is concluded that Methanosarcina sp. forming multicellular aggregates may resist to inhibition by volatile fatty acids (VFAs) because a slow diffusion rate of the acids limits the VFA concentrations inside the Methanosarcina sp. aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FISH:

Fluorescent in situ hybridization

PSW:

Putrescible solid waste

CMSW:

Chinese municipal solid waste

References

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlosthatis SG, Rozzi A et al (2002) Anaerobic digestion model no. 1 (ADM1). IWA Press, Padstow: TJ International (Ltd.), 77 pp

  • Conrad R (2005) Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and proposal. Org Geochem 36:739–752. doi:10.1016/j.orggeochem.2004.09.006

    Article  CAS  Google Scholar 

  • Dong X, Plugge CM, Stams AJM (1994) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl Environ Microbiol 60:2834–2838

    PubMed  CAS  Google Scholar 

  • Ferry JG (ed) (1993) Methanogenesis: ecology, physiology, biochemistry & genetics. Chapman & Hill, New York

  • Fey A, Chin K-J, Conrad R (2001) Thermophilic methanogens in rice field soil. Environ Microbiol 3(5):295–303. doi:10.1046/j.1462-2920.2001.00195.x

    Article  PubMed  CAS  Google Scholar 

  • Fukuzaki S, Nishio N, Nagai S (1990a) Kinetics of the methanogenic fermentation of acetate. Appl Environ Microbiol 56:3158–3163

    PubMed  CAS  Google Scholar 

  • Fukuzaki S, Nishio N, Shobayashi M, Nagai S (1990b) Inhibition of the fermentation of propionate to methane by hydrogen, acetate and propionate. Appl Environ Microbiol 56:719–723

    PubMed  CAS  Google Scholar 

  • Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141. doi:10.1128/AEM.00489-06

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Ahn Y, Speece RE (2002) Comparative process stability and efficiency of anaerobic digestion: mesophilic vs. thermophilic. Water Res 36:4369–4385. doi:10.1016/S0043-1354(02)00147-1

    Article  PubMed  CAS  Google Scholar 

  • Laloui-Carpentier W, Li T, Vigneron V, Mazeas L, Bouchez T (2006) Methanogenic diversity and activity in municipal solid waste landfill leachates. Ant v Leeuwenh 89:423–434

    Article  Google Scholar 

  • Lokshina LY, Vavilin VA, Kettunen RH, Rintala JA, Holliger C, Nozhevnikova AN (2001) Evaluation of kinetic coefficients using integrated Monod and Haldane models for low-temperature acetoclastic methanogenesis. Water Res 35:2913–2922. doi:10.1016/S0043-1354(00)00595-9

    Article  PubMed  CAS  Google Scholar 

  • McMahon KD, Stroot PG, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-II. Microbial population dynamics. Water Res 35:1817–1827. doi:10.1016/S0043-1354(00)00438-3

    Article  PubMed  CAS  Google Scholar 

  • Nielsen HB, Angelidaki I (2008) Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour Technol 99. doi:10.1016/j.biortech.2008.03.049

  • Poels J, van Assche P, Verstraete W (1985) Influence of H2 stripping on methane production in conventional digesters. Biotechnol Bioeng 27:1692–1698. doi:10.1002/bit.260271210

    Article  PubMed  CAS  Google Scholar 

  • Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Ant v Leeuwenh 66:271–274

    Article  CAS  Google Scholar 

  • Stroot PG, McMahon KD, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-I. Digester performance. Water Res 35:1804–1816. doi:10.1016/S0043-1354(00)00439-5

    Article  PubMed  CAS  Google Scholar 

  • ten Brummeler E (2000) Full scale experience with the BIOCEL process. Water Sci Technol 41(3):299–304

    PubMed  CAS  Google Scholar 

  • Qu X, Mazeas L, Vavilin VA, Epissard J, Lemunier M, Mouchel JM, He PJ, Bouchez T Combined monitoring of changes in δ 13CH4 and archaeal community structure during mesophilic methanization of municipal solid waste. FEMS Microb Ecol (submitted)

  • Vasiliev VB, Vavilin VA (1992) Substrate consumption by an activated sludge with changing bacterial size and form. Ecol Modelling 60:1–9

    Article  Google Scholar 

  • Vavilin VA, Angelidaki I (2005) Anaerobic degradation of solid material: importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model. Biotech Bioeng 89:113–122

    Article  CAS  Google Scholar 

  • Vavilin VA, Lokshina LY (1996) Modeling of volatily fatty acids degradation and evaluation of microorganism activity. Biores Technol 57:69–80

    Article  CAS  Google Scholar 

  • Vavilin VA, Vasiliev VB, Rytov SV (1993) Modelling organic matter destruction by microorganism association. Nauka Publishers, Moskva, 204 pp (in Russian)

  • Vavilin VA, Vasiliev VB, Rytov SV, Ponomarev AV (1995) Modeling ammonia and hydrogen sulfide inhibition in anaerobic digestion. Wat Res 29:827–835

    Article  CAS  Google Scholar 

  • Vavilin VA, Lokshina LY, Rytov SV, Kotsurbenko OR, Nozhevnikova AN (2000) Description of two-step kinetics in methane formation during psychrophilic H2/CO2 and mesophilic glucose conversions. Biores Thechnol 71:195–209

    Article  CAS  Google Scholar 

  • Vavilin VA, Rytov SV, Lokshina LY, Pavlostathis SG, Barlaz MA (2003) Distributed model of solid waste anaerobic digestion. Effect of leachate recirculation and pH adjustment. Biotech Bioeng 81:66–73

    Article  CAS  Google Scholar 

  • Vavilin VA, Jonsson S, Ejlertsson J, Svensson BH (2006) Modelling MSW decomposition under landfill conditions considering hydrolytic and methanogenic inhibition. Biodegradation 17:389–402

    Article  PubMed  CAS  Google Scholar 

  • Vavilin VA, Lokshina LY, Flotats X, Angelidaki I (2007) Anaerobic digestion of solid material: multidimensional modelling of continuous-flow reactor with non-uniform influent concentration distributions. Biotech Bioeng 97:354–366

    Article  CAS  Google Scholar 

  • Vavilin VA, Fernandez B, Jordi P, Flotats X (2008) Hydrolisis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manage 28:939–951

    Article  CAS  Google Scholar 

  • Vedrenne F, Beline F, Dabert P, Bernet N (2008) The effect of incubation condition on the laboratory measurement of the methane producing capacity of livestock wastes. Biores Technol 99:146–155

    Article  CAS  Google Scholar 

  • Vigneron V, Ponthieu M, Barina G, Audic JM, Duquennoi C, Mazeas L, Bernet N, Bouchez T (2007) Nitrate and nitrite injection during municipal solid waste anaerobic biodegradation. Waste Manage 27:778–791

    Article  CAS  Google Scholar 

  • Voolapalli RV, Stuckey DC (1999) Relative importance of trophic group concentrations during anaerobic degradation of volatile fatty acids. Appl Environ Microbiol 65:5009–5016

    PubMed  CAS  Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis—ecology, physiology, biochemistry & genetics. Chapman & Hill, New York, pp 128–206

    Google Scholar 

Download references

Acknowledgements

The generous support of Vasily Vavilin and Xian Qu by the CEMAGREF and the Suez-Environment is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vasily A. Vavilin or Theodore Bouchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vavilin, V.A., Qu, X., Mazéas, L. et al. Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste. Antonie van Leeuwenhoek 94, 593–605 (2008). https://doi.org/10.1007/s10482-008-9279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-008-9279-2

Keywords

Navigation