Skip to main content
Log in

Hyperproduction of chitinase influences crystal toxin synthesis and sporulation of Bacillus thuringiensis

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Bacillus thuringiensis HD-73 was transformed with the endochitinase gene chiA74 under the control of a strong promoter (pcytA) and a 5′ mRNA stabilizing (STAB-SD) sequence (HD-73-pEBchiA74). Expression levels were compared with those observed from the wild type strain (HD-73) and the recombinant HD-73 strain expressing chiA74 under the control of its native promoter (HD-73-pEHchiA74). The chitinolytic activity of HD-73-pEBchiA74 was markedly elevated, being ~58- and 362-fold higher than, respectively, HD-73-pEHchiA74 and parental HD-73, representing the highest levels of chitinase expression in recombinant B. thuringiensis reported to date. Parasporal crystals measured under transmission electron microscopy showed that HD-73 produced crystals of 1.235 (±0.214) and 1.356 (±0.247) μm in length when the bacterium was grown in respectively, NBS and NBS with glucose. Otherwise, HD-73-pEBchiA74 synthesized crystals of 1.250 (±0.222) and 1.139 (±0.202) μm in length when cultivated in NBS and NBS with glucose, respectively, values that showed a diminution of ~10 and 20% compared with crystals produced by HD-73-pEHchiA74 grown under the same conditions. Comparison of viable spore counts per ml showed that HD-73-pEBchiA74 produced fewest viable spores (1.5 × 109, 1.3 × 109), compared to HD-73-pEHchiA74 (4.9 × 109, 5.3 × 109) and HD-73 (6.8 × 109, 8.8 × 109) when grown in NBS and NBS supplemented with glucose, respectively. No change in cellular protease activity was observed despite the overproduction of the chitinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adanj MJ, Staver MJ, Rocheleau TA, Leighton J, Barker RF, Thompson DV (1985) Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36:289–300. doi:10.1016/0378-1119(85)90184-2

    Article  Google Scholar 

  • Agaisse H, Lereclus D (1996) STAB-SD: a Shine-Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability. Mol Microbiol 20:633–643. doi:10.1046/j.1365-2958.1996.5401046.x

    Article  PubMed  CAS  Google Scholar 

  • Arora N, Ahmad T, Rajagopal R, Bhatnagar RK (2003) A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1. Biochem Biophys Res Commun 307:620–625. doi:10.1016/S0006-291X(03)01228-2

    Article  PubMed  CAS  Google Scholar 

  • Barboza-Corona JE, Contreras JC, Velázquez-Robledo R, Bautista-Justo M, Gómez-Ramírez M, Cruz-Camarillo R, Ibarra JE (1999) Selection of chitinolytic strains of Bacillus thuringiensis. Biotechnol Lett 21:1125–1129. doi:10.1023/A:1005626208193

    Article  CAS  Google Scholar 

  • Barboza-Corona JE, Nieto-Mazzocco E, Velázquez-Robledo R, Salcedo-Hernández R, Bautista M, Jiménez B, Ibarra JE (2003) Cloning, sequencing, and expression of the chitinase gene chiA74 from Bacillus thuringiensis. Appl Environ Microbiol 69:1023–1029. doi:10.1128/AEM.69.2.1023-1029.2003

    Article  PubMed  CAS  Google Scholar 

  • Barboza-Corona JE, Reyes-Rios DM, Salcedo-Hernández R, Bideshi D (2008) Molecular and biochemical characterization of an endochitinase (ChiA-HD73) from Bacillus thuringiensis subsp. kurstaki HD-73. Mol Biotechnol 39:29–37. doi:10.1007/s12033-007-9025-4

    Article  PubMed  CAS  Google Scholar 

  • Berbert-Molina MA, Prata AM, Pessanha LG, Silveira MM (2008) Kinetics of Bacillus thuringiensis var. israelensis growth on high glucose concentration. J Ind Microbiol Biotechnol 35:1397–1404. doi:10.1007/s10295-008-0439-1

    Article  PubMed  CAS  Google Scholar 

  • Carsolio C, Gutiérrez A, Jiménez B, Van Montagu M, Herrera-Estrella A (1994) Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci USA 91:10903–10907. doi:10.1073/pnas.91.23.10903

    Article  PubMed  CAS  Google Scholar 

  • Casique-Arroyo G, Bideshi D, Salcedo-Hernández R, Barboza-Corona JE (2007) Development of a recombinant strain of Bacillus thuringiensis subsp. kurstaki HD-73 that produces the endochitinase ChiA74. Antonie Van Leeuwenhoek 92:1–9. doi:10.1007/s10482-006-9127-1

    Article  PubMed  CAS  Google Scholar 

  • Ding X, Luo Z, Gao B, Sun Y, Zhang Y (2008) Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis. Curr Microbiol 56:442–446. doi:10.1007/s00284-008-9112-1

    Article  PubMed  CAS  Google Scholar 

  • Driss F, Kallassy-Awad M, Zouari N, Jaoua S (2005) Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J Appl Microbiol 99:945–953. doi:10.1111/j.1365-2672.2005.02639.x

    Article  PubMed  CAS  Google Scholar 

  • Felse PA, Panda T (1999) Regulation and cloning of microbial chitinase genes. Appl Microbiol Biotechnol 51:141–151. doi:10.1007/s002530051374

    Article  PubMed  CAS  Google Scholar 

  • Jan J, Valle F, Bolivar F, Merino E (2001) Construction of protein overproducer strains in Bacillus subtilis by an integrative approach. Appl Microbiol Biotechnol 55:69–75. doi:10.1007/s002530000448

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lereclus D, Arantes O, Chaufaux J, Lecadet MM (1989) Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol Lett 60:211–218

    CAS  Google Scholar 

  • Lertcanawanichakul M, Wiwat C (2000) Improved shuttle vector for expression of chitinase gene in Bacillus thuringiensis. Lett Appl Microbiol 31:123–128. doi:10.1046/j.1365-2672.2000.00777.x

    Article  PubMed  CAS  Google Scholar 

  • Lertcanawanichakul M, Wiwat C, Bhumiratana A, Dean DH (2004) Expression of chitinase-encoding genes in Bacillus thuringiensis and toxicity of engineered B. thuringiensis subsp. aizawai toward Lymantria dispar larvae. Curr Microbiol 48:175–181. doi:10.1007/s00284-003-4119-0

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Xiong G (2004) Molecular cloning and sequence analysis of the chitinase gene form Bacillus thuringiensis serovar alesti. Biotechnol Lett 26:635–639. doi:10.1023/B:BILE.0000023021.50213.ed

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Cai QX, Liu HZ, Zhang BH, Yang JP, Yuan ZM (2002) Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J Appl Microbiol 93:374–379. doi:10.1046/j.1365-2672.2002.01693.x

    Article  PubMed  CAS  Google Scholar 

  • Ni X, Westpheling J (1997) Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction. Proc Natl Acad Sci USA 94:13116–13121. doi:10.1073/pnas.94.24.13116

    Article  PubMed  CAS  Google Scholar 

  • Park HW, Ge B, Bauer LS, Federici BA (1998) Optimization of Cry3A yields in Bacillus thuringiensis by use of sporulation-dependent promoters in combination with the STAB-SD mRNA sequence. Appl Environ Microbiol 64:3932–3938

    PubMed  CAS  Google Scholar 

  • Park HW, Bideshi DK, Johnson JJ, Federici BA (1999) Differential enhancement of Cry2A versus Cry11A yields in Bacillus thuringiensis by use of the cry3A STAB mRNA sequence. FEMS Microbiol Lett 181:319–327. doi:10.1111/j.1574-6968.1999.tb08862.x

    Article  PubMed  CAS  Google Scholar 

  • Park HW, Bideshi DK, Federici BA (2000) Molecular genetic manipulation of truncated Cry1C protein synthesis in Bacillus thuringiensis to improve stability and yield. Appl Environ Microbiol 66:4449–4455. doi:10.1128/AEM.66.10.4449-4455.2000

    Article  PubMed  CAS  Google Scholar 

  • Park HW, Delécluse A, Federici BA (2001) Construction and characterization of a recombinant Bacillus thuringiensis subsp. israelensis strain that produces Cry11B. J Invertebr Pathol 78:37–44. doi:10.1006/jipa.2001.5038

    Article  PubMed  CAS  Google Scholar 

  • Park HW, Bideshi DK, Wirth MC, Johnson JJ, Walton WE, Federici BA (2005) Recombinant larvicidal bacteria with markedly improved efficacy against culex vectors of the west nile virus. Am J Trop Med Hyg 72:732–738

    PubMed  CAS  Google Scholar 

  • Park HW, Bideshi DK, Federici BA (2007) The 20-kDa protein of Bacillus thuringiensis subsp. israelensis enhances Bacillus sphaericus 2362 Bin toxin synthesis. Curr Microbiol 55:119–124. doi:10.1007/s00284-006-0359-0

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Ramirez A, Ibarra JE (2008) Plasmid patterns of Bacillus thuringiensis type strains. Appl Environ Microbiol 74:125–129. doi:10.1128/AEM.02133-07

    Article  PubMed  CAS  Google Scholar 

  • Rojas-Avelizapa LI, Cruz-Camarillo R, Guerrero MI, Rodríguez-Vázquez R, Ibarra JE (1999) Selection and characterization of a proteo-chitinolytic strain of Bacillus thuringiensis, able to grow in shrimp waste media. World J Microbiol Biotechnol 15:261–268. doi:10.1023/A:1008947029713

    Article  CAS  Google Scholar 

  • Ruiz-Sánchez A, Cruz-Camarillo R, Salcedo-Hernández R, Ibarra J, Barboza-Corona JE (2005) Molecular cloning and purification of an endochitinase from Serratia marcescens (Nima). Mol Biotechnol 31:103–111. doi:10.1385/MB:31:2:103

    Article  PubMed  Google Scholar 

  • Saito A, Fujii T, Yoneyama T, Miyashita K (1998) glkA is involved in glucose repression of chitinase production in Streptomyces lividans. J Bacteriol 180:2911–2914

    PubMed  CAS  Google Scholar 

  • Scherrer P, Lüthy P, Trumpi B (1973) Production of d-endotoxin by Bacillus thuringiensis as a function of glucose concentration. Appl Microbiol 25:644–646

    PubMed  CAS  Google Scholar 

  • Schnepf F, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson D, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystals proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  • Sirichotpakorn N, Rongnoparut P, Choosang K, Panbangred W (2001) Coexpression of chitinase and the cry11Aa1 toxin genes in Bacillus thuringiensis serovar israelensis. J Invertebr Pathol 78:160–169. doi:10.1006/jipa.2001.5058

    Article  PubMed  CAS  Google Scholar 

  • Thamthiankul S, Suan-Ngay S, Tantimavanich S, Panbangred W (2001) Chitinase from Bacillus thuringiensis subsp. pakistani. Appl Microbiol Biotechnol 56:395–401. doi:10.1007/s002530100630

    Article  PubMed  CAS  Google Scholar 

  • Thamthiankul S, Moar WJ, Miller ME, Panbangred W (2004) Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Appl Microbiol Biotechnol 65:183–192. doi:10.1007/s00253-004-1606-6

    Article  PubMed  CAS  Google Scholar 

  • Waalwijk C, Dullemans AM, Workman MES, Visser B (1985) Molecular cloning and the nucleotide sequence of the Mr 28, 000 crystal protein gene of Bacillus thuringiensis subsp. israelensis. Nucleic Acids Res 13:8207–8217. doi:10.1093/nar/13.22.8207

    Article  PubMed  CAS  Google Scholar 

  • Zhong WF, Jiang LH, Yan WZ, Cai PZ, Zhang ZX, Pei Y (2003) Cloning and sequence of chitinase gene from Bacillus thuringiensis subsp. israelensis. Yi Chuan Xue Bao 30:364–369

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grant (SEP-CONACYT-2003-C02-44990, México) to J.E.B.-C. The authors are grateful for the essential material provided by Brian A. Federici (University of California, Riverside) and Hyun-Woo Park (Florida A&M University) for the pPF-CH vector and whose group developed the pcyt1A/STAB-SD expression system. In addition, we thank Gabriela Casique-Arroyo, Laura Cortez, Regina Basurto and Aurora Verver for their excellent technical support. Tomas Ortiz-Rodríguez and Norma de la Fuente-Salcido are, respectively, undergraduate and graduate students supported by CONCYTEG and CONACYT, México, fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Eleazar Barboza-Corona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barboza-Corona, J.E., Ortiz-Rodríguez, T., de la Fuente-Salcido, N. et al. Hyperproduction of chitinase influences crystal toxin synthesis and sporulation of Bacillus thuringiensis . Antonie van Leeuwenhoek 96, 31–42 (2009). https://doi.org/10.1007/s10482-009-9332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9332-9

Keywords

Navigation