Skip to main content
Log in

Two-level stabilized finite element method for Stokes eigenvalue problem

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h = O(H 2), which can still maintain the asymptotically optimal accuracy. It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution, which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h. Hence, the two-level stabilized finite element method can save a large amount of computational time. Moreover, numerical tests confirm the theoretical results of the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuska, I. and Osborn, J. E. Eigenvalue problems. Handbook of Numerical Analysis, Vol. II, Finite Element Method (Part I) (eds. Ciarlet, P. G. and Lions, J. L.), North-Holland, Amsterdam, 641–787 (1991)

    Google Scholar 

  2. Babuska, I. and Osborn, J. E. Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comp., 52, 275–297 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Lin, Q. and Xie, H. Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method. Appl. Numer. Math., 59, 1884–1893 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lin, Q. Fourth order eigenvalue approximation by extrapolation on domains with reentrant corners. Numer. Math., 58, 631–640 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Jia, S., Xie, H., Yin, X., and Gao, S. Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods. Appl. Math., 54, 1–15 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, H., Jia, S. H., and Xie, H. Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem. Appl. Numer. Math., 61, 615–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Jia, S., and Xie, H. Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems. Appl. Math., 54, 237–250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, P. Z., He, Y. N., and Feng, X. L. Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem. Math. Probl. Eng., 2011, 1–14 (2011)

    MathSciNet  Google Scholar 

  9. Chen, W. and Lin, Q. Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method. Appl. Math., 51, 73–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mercier, B., Osborn, J., Rappaz, J., and Raviart, P. A. Eigenvalue approximation by mixed and hybrid methods. Math. Comput., 36, 427–453 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu, J. and Zhou, A. H. A two-grid discretization scheme for eigenvalue problems. Math. Comput., 70, 17–25 (2009)

    MathSciNet  Google Scholar 

  12. Yin, X., Xie, H., Jia, S., and Gao, S. Asymptotic expansions and extrapolations of eigenvalues for the Stokes problem by mixed finite element methods. J. Comput. Appl. Math., 215, 127–141 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lovadina, C., Lyly, M., and Stenberg, R. A posteriori estimates for the Stokes eigenvalue problem. Numerical Methods for Partial Differential Equations, 25, 244–257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, F., Lin, Q., and Xie, H. Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods. Preprint at http://arxiv.org/abs/1109.5977 (2011)

  15. Hu, J., Huang, Y., and Lin, Q. The lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. Preprint at http://arxiv.org.abs/1112.1145 (2011)

  16. Bochev, P., Dohrmann, C. R., and Gunzburger, M. D. Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal., 44, 82–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, J. and He, Y. N. A stabilized finite element method based on two local Gauss integrations for the Stokes equations. J. Comput. Appl. Math., 214, 58–65 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, J. and Chen, Z. A new local stabilized nonconforming finite element method for the Stokes equations. Computing, 82, 157–170 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J., He, Y. N., and Chen, Z. X. A new stabilized finite element method for the transient Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 197, 22–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, J. Investigations on two kinds of two-level stabilized finite element methods for the stationary Navier-Stokes equations. Appl. Math. Comput., 182, 1470–1481 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, P. Z., Zhang, T., and Si, Z. Y. A stabilized Oseen iterative finite element method for stationary conduction-convection equations. Math. Meth. Appl. Sci., 35, 103–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, J. A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput., 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, J. Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal., 33, 1759–1778 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Layton, W. and Tobiska, L. A two-level method with backtracking for the Navier-Stokes equations. SIAM J. Numer. Anal., 35, 2035–2054 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, F. Y., Ma, Y. C., and Wo, W. F. Local and parallel finite element algorithms based on twogrid discretization for steady Navier-Stokes equations. Appl. Math. Mech. -Engl. Ed., 28(1), 27–35 (2007) DOI 10.1007/s10483-007-0104-x

    Article  MathSciNet  MATH  Google Scholar 

  26. Qin, X. Q., Ma, Y. C., and Zhang, Y. Two-grid method for characteristics finite-element solution of 2D nonlinear convection-dominated diffusion problem. Appl. Math. Mech. -Engl. Ed., 26(11), 1506–1514 (2005) DOI 10.1007/BF03246258

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, C., Huang, Z. P., and Li, L. K. Two-grid partition of unity method for second order elliptic problems. Appl. Math. Mech. -Engl. Ed., 29(4), 527–533 (2008) DOI 10.1007/s10483-008-0411-x

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, Y. and He, Y. N. A two-level finite element method for the stationary Navier-Stokes equations based on a stabilized local projection. Numer. Meth. Part. Differ. Equ., 27, 460–477 (2011)

    Article  MathSciNet  Google Scholar 

  29. Ervin, V., Layton, W., and Maubach, J. A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations. Numer. Meth. Part. Differ. Equ., 12, 333–346 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. He, Y. N. and Li, K. T. Two-level stabilized finite element methods for the steady Navier-Stokes problem. Computing, 74, 337–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. He, Y. N. and Wang, A. W. A simplified two-level method for the steady Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 197, 1568–1576 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shang, Y. Q. and Luo, Z. D. A parallel two-level finite element method for the Navier-Stokes equations. Appl. Math. Mech. -Engl. Ed., 31(11), 1429–1438 (2010) DOI 10.1007/s10483-010-1373-7

    Article  MathSciNet  MATH  Google Scholar 

  33. Becker, R. and Hansbo, P. A simple pressure stabilization method for the Stokes equation. Commun. Numer. Meth. Engrg., 24, 1421–1430 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hecht, F., Pironneau, O., Hyaric, A. L., and Ohtsuka, K. FreeFEM++, Version 2.3–3 (2008) Software avaible at http://www.freefem.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin-nian He  (何银年).

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 10901131, 10971166, and 10961024), the National High Technology Research and Development Program of China (No. 2009AA01A135), and the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2010211B04)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Pz., He, Yn. & Feng, Xl. Two-level stabilized finite element method for Stokes eigenvalue problem. Appl. Math. Mech.-Engl. Ed. 33, 621–630 (2012). https://doi.org/10.1007/s10483-012-1575-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1575-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation