Skip to main content
Log in

Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) domain technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jin, D. P., Hu, H. Y., and Wu, Z. Q. Analysis of vibro-impacting flexible beams based on Hertzian contact model (in Chinese). Journal of Vibration Engineering, 11(1), 46–51 (1998)

    Google Scholar 

  2. Yigit, A. S., Ulsoy, A. G., and Scott, R. A. Spring-dashpot models for the dynamics of a radically rotating beam with impact. Journal of Sound and Vibration, 142(3), 515–525 (1990)

    Article  Google Scholar 

  3. Yamauchi, S. The nonlinear vibration of flexible rotors. Transaction of JSME, Series C, 446, 1862–1868 (1983)

    Article  Google Scholar 

  4. Kim, Y. B. and Noah, S. T. Stability and bifurcation analysis of oscillators with piecewise-linear characteristics: a general approach. ASME Journal of Applied Mechanics, 58(2), 545–553 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kim, Y. B. and Noah, S. T. Response and bifurcation analysis of an MDOF rotor system with a strong nonlinearity. Nonlinear Dynamics, 2, 215–234 (1991)

    Article  Google Scholar 

  6. Kim, Y. B. and Noah, S. T. Quasi-periodic response and stability analysis for a non-linear Jeffcott rotor. Journal of Sound and Vibration, 190(2), 239–253 (1996)

    Article  Google Scholar 

  7. Groll, G. V. and Ewins, D. J. The harmonic balance method with arc-length continuation in rotor/stator contact problems. Journal of Sound and Vibration, 241(2), 223–233 (2001)

    Article  Google Scholar 

  8. Tiwari, M. and Gupta, K. Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. Journal of Sound and Vibration, 238(5), 723–756 (2000)

    Article  Google Scholar 

  9. Villa, C., Sinou, J. J., and Thouverez, F. Stability and vibration analysis of a complex flexible rotor bearing system. Communications in Nonlinear Science and Numerical Simulation, 13, 804–821 (2008)

    Article  Google Scholar 

  10. Cash, J. R. and Karp, A. H. A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software, 16(3), 201–222 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nayfeh, A. H. and Balachandran, B. Applied Nonlinear Dynamics, Wiley InterScience, New York (1995)

    Book  MATH  Google Scholar 

  12. Ling, F. H. A numerical treatment of the periodic solutions of non-linear vibration systems. Applied Mathematics and Mechanics (English Edition), 4(4), 525–546 (1983) DOI 10.1007/BF01874666

    Article  MATH  MathSciNet  Google Scholar 

  13. Hu, H. Y. Numerical scheme of locating the periodic response of non-smooth non-autonomous systems of high dimension. Computer Methods in Applied Mechanics and Engineering, 123(1), 53–62 (1995)

    Article  Google Scholar 

  14. Li, D. X. and Xu, J. X. Periodic solution and its approximate analytic expressions of the nonlinear rotor bearing system (in Chinese). Chinese Journal of Computational Mechanics, 21(5), 557–563 (2004)

    Google Scholar 

  15. Choi, S. K. and Noah, S. T. Response and stability analysis of piecewise-linear oscillators under multi-forcing frequencies. Nonlinear Dynamics, 3, 105–121 (1992)

    Article  Google Scholar 

  16. Bai, C. Q., Xu, Q. Y., and Zhang, X. L. Nonlinear stability of balanced rotor due to effect of ball bearing internal clearance. Applied Mathematics and Mechanics (English Edition), 27(2), 175–186 (2006) DOI 10.1007/s10483-006-0205-1

    Article  Google Scholar 

  17. Zhou, J. Q. and Zhu, Y. Y. Nonlinear Vibrations (in Chinese), Xi’an Jiao Tong University Press, Xi’an (1998)

    Google Scholar 

  18. Press, W. H., Teukolsky, S. A., Vellering, W. T., and Flannery, B. P. Numerical Recipes in Fortran the Art of Scientifc Computing, 2nd ed., Cambridge University Press, Cambridge (1992)

    Google Scholar 

  19. Chua, L. O. and Akio, U. Algorithms for computing almost periodic steady state response of nonlinear systems to multiple input frequencies. IEEE Transactions on Circuits and Systems, 28, 953–971 (1981)

    Article  MATH  Google Scholar 

  20. Chen, Y. S. Nonlinear Vibrations (in Chinese), Higher Education Press, Beijing (2002)

    Google Scholar 

  21. Lau, S. L. and Cheung, Y. K. Amplitude incremental variational principle for nonlinear vibration of elastic systems. ASME Journal of Applied Mechanics, 48, 959–964 (1981)

    Article  MATH  Google Scholar 

  22. Shen, J. H., Lin, K. C., Chen, S. H., and Sze, K. Y. Bifurcation and route-to-chaos analyses for Mathieu-Duffing oscillator by the incremental harmonic balance method. Nonlinear Dynamics, 52, 403–414 (2008)

    Article  MATH  Google Scholar 

  23. Aghothama, A. R. and Arayanan, S. N. Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. Journal of Sound and Vibration, 226(3), 469–492 (1999)

    Article  Google Scholar 

  24. Yang, S. P. and Shen, Y. J. Nonlinear dynamics of gear system based on incremental harmonic balance method (in Chinese). Journal of Vibration and Shock, 24(3), 40–42 (2005)

    MathSciNet  Google Scholar 

  25. Hu, H. Y. Applied Nonlinear Dynamics (in Chinese), Aviation Industry Press, Beijing (2000)

    Google Scholar 

  26. Zorich, V. A. Mathematical Analysis II, Springer, Berlin (2002)

    Google Scholar 

  27. Cameron, T. M. and Griffin, J. H. An alternating frequency/time domain method for calculating the steady state response of nonlinear dynamic systems. ASME Journal of Applied Mechanics, 56, 149–154 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Luo, A. C. J. Continous Dynamical Systems, Higher Education Press, Beijing (2012)

    Google Scholar 

  29. Luo, A. C. J. Regularity and Complexity in Dynamical Systems, Springer-Verlage, New York (2012)

    Book  MATH  Google Scholar 

  30. Arnold, V. I. Mathematical Methods of Classical Mechanics, 2nd ed., Springer-Verlag, New York (1991)

    Google Scholar 

  31. Liew, A., Feng, N., and Hahn, E. J. Transient rotordynamic modeling of rolling element bearing systems. Journal of Engineering for Gas Turbines and Power, 124, 984–991 (2002)

    Article  Google Scholar 

  32. Gao, S. H., Long, X. H., and Meng, G. Nonlinear response and nonsmooth bifurcations of an unbalanced machine-tool spindle-bearing system. Nonlinear Dynamics, 54, 365–377 (2008)

    Article  MATH  Google Scholar 

  33. Friedmann, P. and Hammond, C. E. Efficient numerical treatment of periodic systems with application to stability problems. International Journal for Numerical Methods in Engineering, 11, 1117–1136 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A. Determining Lyapunov exponents from a time series. Physica D, 16, 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yong Zhang  (张智勇).

Additional information

Project supported by the National Natural Science Foundation of China (No. 10632040)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zy., Chen, Ys. Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential. Appl. Math. Mech.-Engl. Ed. 35, 423–436 (2014). https://doi.org/10.1007/s10483-014-1802-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1802-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation