Skip to main content
Log in

Scattering by circular cavity in radially inhomogeneous medium with wave velocity variation

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Based on the theory of complex function and the principle of homogenization, harmonic dynamics stress of a radially infinite inhomogeneous medium with a circular cavity is investigated. Due to the symmetry, wave velocity is assumed to have power-law variation in the radial direction only, and the shear modulus is constant. The Helmholtz equation with a variable coefficient is equivalently transformed into a standard Helmholtz equation with a general conformal transformation method (GCTM). The displacements and stress fields are proposed. Numerical results show that the wave number and the inhomogeneity parameter of the medium have significant effects on the dynamic stress concentration around the circular cavity. The dynamic stress concentration factor (DSCF) becomes singular when the inhomogeneity parameter of medium is close to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van, T. and Wood, A. A time-domain finite element method for Helmholtz equations. Journal of Computational Physics, 183(2), 486–507 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Khmelnytskaya, K. V., Kravchenko, V. V., and Oviedo, H. On the solution of the static Maxwell system in axially symmetric inhomogeneous media. Mathematical Methods in the Applied Sciences, 33(4), 439–447 (2010)

    MATH  MathSciNet  Google Scholar 

  3. Elmaimouni, L., Lefebvre, J. E., Zhang, V., and Gryba, T. Guided waves in radially graded cylinders: a polynomial approach. NDT & E International, 38(5), 344–353 (2005)

    Article  Google Scholar 

  4. Elmaimouni, L., Lefebvre, J. E., Raherison, A., and Ratolojanahary, F. E. Acoustical guided waves in inhomogeneous cylindrical materials. Ferroelectrics, 372(1), 115–123 (2008)

    Article  Google Scholar 

  5. Baron, C. Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum. Ultrasonics, 51(2), 123–130 (2011)

    Article  MathSciNet  Google Scholar 

  6. Fang, X. Q., Hu, C., and Du, S. Y. Strain energy density of a circular cavity buried in semiinfinite functionally graded materials subjected to shear waves. Theoretical and Applied Fracture Mechanics, 46(2), 166–174 (2006)

    Article  Google Scholar 

  7. Fang, X. Q., Liu, J. X., Wang, X. H., Zhang, T., and Zhang, S. Dynamic stress from a cylindrical inclusion buried in a functionally graded piezoelectric material layer under electro-elastic waves. Composites Science and Technology, 69(7–8), 1115–1123 (2009)

    Article  Google Scholar 

  8. Fang, X. Q., Liu, J. X., Zhang, L. L., and Kong, Y. P. Dynamic stress from a subsurface cylindrical inclusion in a functionally graded material layer under anti-plane shear waves. Materials and Structures, 44, 67–75 (2011)

    Article  Google Scholar 

  9. Müller, R., Dineva, P., Rangelov, T., and Gross, D. Anti-plane dynamic hole-crack interaction in a functionally graded piezoelectric media. Archive of Applied Mechanics, 82(1), 97–110 (2012)

    Article  MATH  Google Scholar 

  10. Manolis, G. D. Elastic wave scattering around cavities in inhomogeneous continua by the BEM. Journal of Sound and Vibration, 266(2), 281–305 (2003)

    Article  MATH  Google Scholar 

  11. Greif, R. and Chou, S. C. The propagation of radially symmetric stress waves in anisotropic nonhomogeneous elastic media. Journal of Applied Mechanics, 38(1), 51–57 (1971)

    Article  MATH  Google Scholar 

  12. Rvachev, V. L., Sinekop, N. S., and Kravchenko, L. K. Axially symmetric problem of elasticity theory for an inhomogeneous cylinder. International Applied Mechanics, 22(1), 11–16 (1986)

    MATH  MathSciNet  Google Scholar 

  13. Wang, X. and Gong, Y. N. Theoretical solution for axially symmetric problems in elastodynamics. Acta Mechanica Sinica, 7(3), 275–282 (1991)

    Article  Google Scholar 

  14. Kul’chyts’kyi-Zhyhailo, R. and Rogowski, G. Axially symmetric contact problem of pressing of an absolutely rigid ball into an elastic half space with inhomogeneous coating. Materials Science, 45(6), 845–858 (2009)

    Article  Google Scholar 

  15. Tarn, J. Q. and Chang, H. H. Torsion of cylindrically orthotropic elastic circular bars with radial inhomogeneity: some exact solutions and end effects. International Journal of Solids and Structures, 45(1), 303–319 (2008)

    Article  MATH  Google Scholar 

  16. Boström, A., Johansson, M., and Svedberg, T. Elastic wave propagation in a radially anisotropic medium. Geophysical Journal International, 118(2), 401–410 (1994)

    Article  Google Scholar 

  17. Theotokoglou, E. E. and Stampouloglou, I. H. The radially nonhomogeneous elastic axisymmentric problem. International Journal of Solids and Structures, 45(25), 6535–6552 (2008)

    Article  MATH  Google Scholar 

  18. Sburlati, R. Stress concentration factor due to a functionally graded ring around a hole in an isotropic plate. International Journal of Solids and Structures, 50(22–23), 3649–3658 (2013)

    Article  Google Scholar 

  19. Han, X. and Liu, G. R. Elastic waves in a functionally graded piezoelectric cylinder. Smart Materials and Structures, 12(6), 962–971 (2003)

    Article  Google Scholar 

  20. Acharya, D. P., Roy, I., and Biswas, P. K. Vibration of an infinite inhomogeneous transversely isotropic viscoelastic medium with cylindrical hole. Applied Mathematics and Mechanics (English Edition), 29(3), 367–378 (2008) DOI 10.1007/s10483-008-0308-z

    Article  MATH  Google Scholar 

  21. Zhang, X. Z., Kitipornchai, S., Liew, K. M., Lim, C. W., and Peng, L. X. Thermal stresses around a circular hole in a functionally graded plate. Journal of Thermal Stresses, 26(4), 379–390 (2003)

    Article  Google Scholar 

  22. Afsar, A. M. and Go, J. Finite element analysis of thermoelastic field in a rotating FGM circular disk. Applied Mathematical Modelling, 34(11), 3309–3320 (2010)

    Article  MATH  Google Scholar 

  23. Kubair, D. V. and Bhanu-Chandar, B. Stress concentration factor due to a circular hole in functionally graded panels under uniaxial tension. International Journal of Mechanical Sciences, 50(4), 732–742 (2008)

    Article  MATH  Google Scholar 

  24. Mohammadi, M., Dryden, J. R., and Jiang, L. Stress concentration around a hole in a radially inhomogeneous plate. International Journal of Solids and Structures, 48(3), 483–491 (2011)

    Article  MATH  Google Scholar 

  25. Yang, Q., Gao, C. F., and Chen, W. Stress analysis of a functional graded material plate with a circular hole. Archive of Applied Mechanics, 80(8), 895–907 (2010)

    Article  MATH  Google Scholar 

  26. Yang, Q. and Gao, C. F. Dynamic stress analysis of a functionally graded material plate with a circular hole. Meccanica, 48(1), 91–101 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu, D. K., Gai, B. Z., and Tao, G. Y. Applications of the method of complex functions to dynamic stress concentrations. Wave Motion, 4(3), 293–304 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pao, Y. H. and Mow, C. C. Diffraction of Elastic Waves and Dynamic Stress Concentrations, Crane and Russak, New York (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zailin Yang.

Additional information

Project supported by the Earthquake Industry Special Science Research Foundation Project (No. 201508026-02) and the Natural Science Foundation of Heilongjiang Province of China (No.A201310)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Hei, B. & Wang, Y. Scattering by circular cavity in radially inhomogeneous medium with wave velocity variation. Appl. Math. Mech.-Engl. Ed. 36, 599–608 (2015). https://doi.org/10.1007/s10483-015-1937-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1937-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation