Skip to main content
Log in

Pull-in instability analyses for NEMS actuators with quartic shape approximation

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The pull-in instability of a cantilever nano-actuator model incorporating the effects of the surface, the fringing field, and the Casimir attraction force is investigated. A new quartic polynomial is proposed as the shape function of the beam during the deflection, satisfying all of the four boundary values. The Gaussian quadrature rule is used to treat the involved integrations, and the design parameters are preserved in the evaluated formulas. The analytic expressions are derived for the tip deflection and pull-in parameters of the cantilever beam. The micro-electromechanical system (MEMS) cantilever actuators and freestanding nanoactuators are considered as two special cases. It is proved that the proposed method is convenient for the analyses of the effects of the surface, the Casimir force, and the fringing field on the pull-in parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pelesko, J. A. and Bernstein, D. H. Modeling MEMS and NEMS, Chapman and Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  2. Zhang, W. M., Yan, H., Peng, Z. K., and Meng, G. Electrostatic pull-in instability in MEMS/NEMS: a review. Sensors and Actuators, A: Physical, 214, 187–218 (2014)

    Article  Google Scholar 

  3. Kuang, J. H. and Chen, C. J. Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuators. Mathematical and Computer Modelling, 41, 1479–1491 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lin, W. H. and Zhao, Y. P. Pull-in instability of micro-switch actuators: model review. International Journal of Nonlinear Sciences and Numerical Simulation, 9, 175–183 (2008)

    Article  Google Scholar 

  5. Koochi, A., Kazemi, A. S., Beni, Y. T., Yekrangi, A., and Abadyan, M. Theoretical study of the effect of Casimir attraction on the pull-in behavior of beam-type NEMS using modified Adomian method. Physica E: Low-dimensional Systems and Nanostructures, 43, 625–632 (2010)

    Article  Google Scholar 

  6. Ramezani, A., Alasty, A., and Akbari, J. Closed-form solutions of the pull-in instability in nanocantilevers under electrostatic and intermolecular surface forces. International Journal of Solids and Structures, 44, 4925–4941 (2007)

    Article  MATH  Google Scholar 

  7. Lin, W. H. and Zhao, Y. P. Nonlinear behavior for nanoscale electrostatic actuators with Casimir force. Chaos, Solitons and Fractals, 23, 1777–1785 (2005)

    Article  MATH  Google Scholar 

  8. Koochi, A. and Abadyan, M. Efficiency of modified Adomian decomposition for simulating the instability of nano-electromechanical switches: comparison with the conventional decomposition method. Trends in Applied Sciences Research, 7, 57–67 (2012)

    Article  Google Scholar 

  9. Abadyan, M. R., Beni, Y. T., and Noghrehabadi, A. Investigation of elastic boundary condition on the pull-in instability of beam-type NEMS under van der Waals attraction. Procedia Engineering, 10, 1724–1729 (2011)

    Article  Google Scholar 

  10. Soroush, R., Koochi, A., Kazemi, A. S., Noghrehabadi, A., Haddadpour, H., and Abadyan, M. Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators. Physica Scripta, 82, 045801 (2010)

    Article  MATH  Google Scholar 

  11. Salekdeh, A. Y., Koochi, A., Beni, Y. T., and Abadyan, M. Modeling effects of three nano-scale physical phenomena on instability voltage of multi-layer MEMS/NEMS: material size dependency, van der Waals force and non-classic support conditions. Trends in Applied Sciences Research, 7, 1–17 (2012)

    Google Scholar 

  12. Beni, Y. T., Koochi, A., and Abadyan, M. Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS. Physica E: Low-dimensional Systems and Nanostructures, 43, 979–988 (2011)

    Article  Google Scholar 

  13. Koochi, A., Kazemi, A., Khandani, F., and Abadyan, M. Influence of surface effects on sizedependent instability of nano-actuators in the presence of quantum vacuum fluctuations. Physica Scripta, 85, 035804 (2012)

    Article  MATH  Google Scholar 

  14. Noghrehabadi, A., Ghalambaz, M., and Ghanbarzadeh, A. A new approach to the electrostatic pull-in instability of nanocantilever actuators using the ADM-Padé technique. Computers and Mathematics with Applications, 64, 2806–2815 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ramezani, A., Alasty, A., and Akbari, J. Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations. Nanotechnology, 19, 015501 (2008)

    Article  Google Scholar 

  16. Lin, W. H. and Zhao, Y. P. Dynamic behavior of nanoscale electrostatic actuators. Chinese Physics Letters, 20, 2070–2073 (2003)

    Article  Google Scholar 

  17. Ma, J. B., Jiang, L., and Asokanthan, S. F. Influence of surface effects on the pull-in instability of NEMS electrostatic switches. Nanotechnology, 21, 505708 (2010)

    Article  Google Scholar 

  18. Duan, J. S. and Rach, R. A pull-in parameter analysis for the cantilever NEMS actuator model including surface energy, fringing field and Casimir effects. International Journal of Solids and Structures, 50, 3511–3518 (2013)

    Article  Google Scholar 

  19. Israelachvili, J. N. Intermolecular and Surface Forces, Academic Press, London (1992)

    Google Scholar 

  20. Mostepanenko, V. M. and Trunov, N. N. The Casimir Effect and Its Application, Oxford Science Publications, New York (1997)

    Google Scholar 

  21. Lamoreaux, S. K. The Casimir force: background, experiments, and applications. Reports on Progress in Physics, 68, 201–236 (2005)

    Article  Google Scholar 

  22. Rodriguez, A. W., Capasso, F., and Johnson, S. G. The Casimir effect in microstructured geometries. Nature Photonics, 5, 211–221 (2011)

    Article  Google Scholar 

  23. Guo, J. G. and Zhao, Y. P. Dynamic stability of electrostatic torsional actuators with van der Waals effect. International Journal of Solids and Structures, 43, 675–685 (2006)

    Article  MATH  Google Scholar 

  24. Guo, J. G. and Zhao, Y. P. Influence of van der Waals and Casimir forces on electrostatic torsional actuators. Journal of Microelectromechanical Systems, 13, 1027–1035 (2004)

    Article  Google Scholar 

  25. Lin, W. H. and Zhao, Y. P. Stability and bifurcation behaviour of electrostatic torsional NEMS varactor influenced by dispersion forces. Journal of Physics, D: Applied Physics, 40, 1649–1654 (2007)

    Article  Google Scholar 

  26. Duan, J. S., Rach, R., and Wazwaz, A. M. Solution of the model of beam-type microand nanoscale electrostatic actuators by a new modified Adomian decomposition method for nonlinear boundary value problems. International Journal of Non-Linear Mechanics, 49, 159–169 (2013)

    Article  Google Scholar 

  27. Gurtin, M. E. and Murdoch, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. He, J. and Lilley, C. M. Surface effect on the elastic behavior of static bending nanowires. Nano Letters, 8, 1798–1802 (2008)

    Article  Google Scholar 

  29. Wang, G. F. and Feng, X. Q. Surface effects on buckling of nanowires under uniaxial compression. Applied Physics Letters, 94, 141913 (2009)

    Article  Google Scholar 

  30. Fu, Y. and Zhang, J. Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Applied Mathematical Modelling, 35, 941–951 (2011)

    Article  MathSciNet  Google Scholar 

  31. Miller, R. E. and Shenoy, V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11, 139–147 (2000)

    Article  Google Scholar 

  32. Jiang, L. Y. and Yan, Z. Timoshenko beam model for static bending of nanowires with surface effects. Physica E: Low-dimensional Systems and Nanostructures, 42, 2274–2279 (2010)

    Article  Google Scholar 

  33. Gupta, R. K. Electrostatic Pull-in Test Structure Design for In-situ Mechanical Property Measurements of Microelectromechanical Systems (MEMS), Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge (1997)

    Google Scholar 

  34. Huang, J. M., Liew, K. M., Wong, C. H., Rajendran, S., Tan, M. J., and Liu, A. Q. Mechanical design and optimization of capacitive micromachined switch. Sensors Actuators, A: Physical, 93, 273–285 (2001)

    Article  Google Scholar 

  35. Duan, J. S. and Rach, R. A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations. Applied Mathematics and Computation, 218, 4090–4118 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Petersen, K. E. Dynamic micromechanics on silicon: techniques and devices. IEEE Transaction on Electron Devices, 25, 1241–1250 (1978)

    Article  Google Scholar 

  37. Ke, C. H., Pugno, N., Peng, B., and Espinosa, H. D. Experiments and modeling of carbon nanotube-based NEMS devices. Journal of the Mechanics and Physics of Solids, 53, 1314–1333 (2005)

    Article  MATH  Google Scholar 

  38. Abramowitz, M. and Stegun, I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York (1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsheng Duan.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11201308), the Natural Science Foundation of Shanghai (No. 14ZR1440800), and the Innovation Program of the Shanghai Municipal Education Commission (No. 14ZZ161)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, J., Li, Z. & Liu, J. Pull-in instability analyses for NEMS actuators with quartic shape approximation. Appl. Math. Mech.-Engl. Ed. 37, 303–314 (2016). https://doi.org/10.1007/s10483-015-2007-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-2007-6

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation