Skip to main content
Log in

Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Magnetohydrodynamic (MHD) bioconvection of an incompressible electrically conducting nanofluid near a vertical wavy surface saturated porous medium containing both nanoparticle and gyrotactic microorganisms is investigated. The nanofluid is represented by a model that includes both Brownian motion and thermophoresis effects. A suitable set of non-dimensional variables are used to transform the governing boundary layer equations into a dimensionless form. The resulting nonlinear system is mapped to the vertical flat plate domain, and a non-similar solution is used to the obtained equations. The obtained non-similar system is then solved numerically using the fourth-order Runge-Kutta method. The influence of various physical parameters on the local Nusselt number, the local Sherwood number, the local density number of the motile microorganisms, the dimensionless velocity, the dimensionless temperature, and the rescaled density of motile microorganisms is studied. It is found that the local Nusselt number, the local Sherwood number, and the local density number of the motile microorganisms decrease by increasing either the Grashof number or the magnetic field parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ã:

amplitude of wavy surface

A :

microorganisms concentration difference parameter

C :

nanoparticle volume fraction

D :

Brownian diffusion coefficient

D t :

thermophoretic diffusion coefficient

D n :

diffusivity of microorganisms

f :

dimensionless stream function

g :

acceleration due to gravity

Gr:

Grashofnumber

k :

thermal conductivity

K :

permeability of porous medium

\(\bar K\) :

material parameter

L :

characteristic length of wavy surface

Le b :

bioconvectionLewisnumber

Le :

Lewis number

M n :

magnetic field parameter

N :

rescaled density of motile microorganisms

N b :

Brownian motion parameter

N r :

buoyancy ratio

N t :

thermophoresis parameter

N nx :

local density number of motile microorganisms

N ux :

local Nusselt number

P :

pressure

Pe b :

bioconvection Péclet number

qm :

surface mass flux

qn:

surface motile microorganisms flux

qw:

surface heat flux

Ra :

Rayleigh number

Ra b :

bioconvection Rayleigh number

Sh x :

local Sherwood number

T :

temperature

W :

constant maximum cell swimming speed

(u, v):

velocity components of fluid

(x, y):

coordinate axes

α :

thermal diffusivity of porous media

φ :

dimensionless nanoparticle volume fraction

β :

volumetric expansion coefficient

θ :

dimensionless temperature

(ξ, η):

non-similarity variables

(ρc)p:

effective heat capacity of nanoparticle material

(ρc)f:

heat capacity of fluid

ρf:

density of fluid

ρp:

nanoparticle mass density

j :

ratio between effective heat capacity of nanoparticle material and heat capacity of fluid

μ :

dynamic viscosity

γ :

average volume of microorganisms

σ :

wavy surface

ψ :

stream function

w :

condition at surface

f :

fluid

∞:

condition in free stream

References

  1. Aziz, A., Khan, W. A., and Pop, I. Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms. International Journal of Thermal Sciences, 56, 48–57 (2012)

    Article  Google Scholar 

  2. Nield, D. A. and Bejan, A. Convection in Porous Media, 3rd ed., Springer, New York (2006)

    MATH  Google Scholar 

  3. Pop, I. and Ingham, D. B. Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media, Pergamon, Oxford (2001)

    Google Scholar 

  4. Ingham, D. B. and Pop, I. Transport Phenomena in Porous Media III, Elsevier, Oxford (2005)

    MATH  Google Scholar 

  5. Vafai, K. Handbook of Porous Media, 2nd ed., Taylor & Francis, New York (2005)

    Book  MATH  Google Scholar 

  6. Vafai, K. Porous Media: Applications in Biological Systems and Biotechnology, CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  7. Vadasz, P. Emerging Topics in Heat and Mass Transfer in Porous Media, Springer, New York (2008)

    Book  Google Scholar 

  8. Cheng, C, Y. Natural convection heat transfer from an inclined wavy plate in a bidisperse porous medium. International Communications in Heat and Mass Transfer, 43, 69–74 (2013)

    Article  Google Scholar 

  9. Chang, T. Laminar film condensation on a horizontal wavy plate embedded in a porous medium. International Journal of Thermal Sciences, 47, 35–42 (2008)

    Article  Google Scholar 

  10. Elshehawey, E. F., Elbarbary, E. M. E., and Elgazery, N. S. Effect of inclined magnetic field on magneto fluid flow through a porous medium between two inclined wavy porous plates (numerical study). Applied Mathematics and Computation, 135, 85–103 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, C. Y. Non-Darcy natural convection heat and mass transfer from a vertical wavy surface in saturated porous media. Applied Mathematics and Computation, 182, 1488–1500 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mahdy, A. MHD non-Darcian free convection from a vertical wavy surface embedded in porous media in the presence of Soret and Dufour effect. International Communications in Heat and Mass Transfer, 36, 1067–1074 (2009)

    Article  Google Scholar 

  13. Mahdi, R. A., Mohammed, H. A., Munisamy, K. M., and Saeid, N. H. Review of convection heat transfer and fluid flow in porous media with nanofluid. Renewable and Sustainable Energy Reviews, 41, 715–734 (2015)

    Article  Google Scholar 

  14. Khan, W. A., Makinde, O. D., and Khan, Z. H. MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. International Journal of Heat and Mass Transfer, 74, 285–291 (2014)

    Article  Google Scholar 

  15. Xu, H. and Pop, I. Mixed convection flow of a nanofluid over a stretching surface with uniform free stream in the presence of both nanoparticle and gyrotactic microorganisms. International Journal of Heat and Mass Transfer, 75, 610–623 (2014)

    Article  Google Scholar 

  16. Kuznetsov, A. V. The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. International Communications in Heat and Mass Transfer, 37, 1421–1425 (2010)

    Article  Google Scholar 

  17. Xu, H. and Pop, I. Fully developed mixed convection flow in a horizontal channel filled by a nanofluid containing both nanoparticles and gyrotactic microorganisms. European Journal of Mechanics-B/Fluids, 46, 37–45 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuznetsov, A. V. and Nield, D. A. The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid a revised model. International Journal of Heat and Mass Transfer, 65, 682–685 (2013)

    Article  Google Scholar 

  19. Mahdy, A. Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical cone in porous media saturated by a nanofluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38, 67–76 (2015)

    Article  Google Scholar 

  20. Akbar, N. S. Bioconvection peristaltic flow in an asymmetric channel filled by nanofluid containing gyrotactic microorganism: bio nano engineering model. International Journal of Numerical Methods for Heat and Fluid Flow, 25, 214–224 (2015)

    Article  MathSciNet  Google Scholar 

  21. Raees, A., Xu, H., Sun, Q., and Pop, I. Mixed convection in gravity-driven nano-liquid film containing both nanoparticles and gyrotactic microorganisms. Applied Mathematics and Mechanics (English Edition), 36(2), 163–178 (2015) DOI 10.1007/s10483-015-1901-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Khan, W. A. and Makinde, O. D. MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet. International Journal of Thermal Sciences, 81, 118–124 (2014)

    Article  Google Scholar 

  23. Sheremet, M. A. and Pop, I. Thermo-bioconvection in a square porous cavity filled by oxytactic microorganisms. Transport in Porous Media, 103, 191–205 (2014)

    Article  MathSciNet  Google Scholar 

  24. Uddin, M. J., Khan, W. A., and Ismail, A. I. M. Free convective flow of non-Newtonian nanofluids in porous media with gyrotactic microorganism. Journal of Thermophysics and Heat Transfer, 27, 326–333 (2013)

    Article  Google Scholar 

  25. Mutuku, W. N. and Makinde, O. D. Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Computers and Fluids, 95, 88–97 (2014)

    Article  MathSciNet  Google Scholar 

  26. Hillesdon, A. J. and Pedley, T. J. Bioconvection in suspensions of oxytactic bacteria: linear theory. Journal of Fluid Mechanics, 324, 223–259 (1996)

    Article  MATH  Google Scholar 

  27. Hill, N. A., Pedley, T. J., and Kessler, J. O. Growth of bioconvection patterns in a suspension of gyrotactic microorganisms in a layer of finite depth. Journal of Fluid Mechanics, 208, 509–543 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuznetsov, A. V. Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth. European Journal of Mechanics-B/Fluids, 30, 156–165 (2011)

    Article  MATH  Google Scholar 

  29. Makinde, O. D. Computational modeling of MHD unsteady flow and heat transfer over a flat plate with Navier slip and Newtonian heating. Brazilian Journal of Chemical Engineering, 29, 159–166 (2012)

    Article  Google Scholar 

  30. Mahdy, A. and Ahmed, S. E. Laminar free convection over a vertical wavy surface embedded in a porous medium saturated with a nanofluid. Transport in Porous Media, 91, 423–435 (2012)

    Article  MathSciNet  Google Scholar 

  31. Ergun, S. Fluid flow through packed columns. Chemical Engineering Progress, 48, 89–94 (1952)

    Google Scholar 

  32. Mahdy, A. and Ahmed, S. E. Thermosolutal Marangoni boundary layer magnetohydrodynamic flow with the Soret and Dufour effects past a vertical flat plate. Engineering Science and Technology, an International Journal, 18, 24–31 (2015)

    Article  Google Scholar 

  33. Nield, D. A. and Kuznetsov, A. V. The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. International Journal of Heat and Mass Transfer, 52, 5792–5795 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S.E., Mahdy, A. Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media. Appl. Math. Mech.-Engl. Ed. 37, 471–484 (2016). https://doi.org/10.1007/s10483-016-2044-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2044-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation