Skip to main content
Log in

Approximate analytical solution in slow-fast system based on modified multi-scale method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A simple, yet accurate modified multi-scale method (MMSM) for an approximately analytical solution in nonlinear oscillators with two time scales under forced harmonic excitation is proposed. This method depends on the classical multi-scale method (MSM) and the method of variation of parameters. Assuming that the forced excitation is a constant, one could easily obtain the approximate analytical solution of the simplified system based on the traditional MSM. Then, this solution for the oscillator under forced harmonic excitation could be established after replacing the harmonic excitation by the constant excitation. To certify the correctness and precision of the proposed analytical method, the van der Pol system with two scales subject to slowly periodic excitation is investigated; this system presents rich dynamical phenomena such as spiking (SP), spiking-quiescence (SP-QS), and quiescence (QS) responses. The approximate analytical expressions of the three types of responses are given by the MMSM, and it can be found that the precision of the new analytical method is higher than that of the classical MSM and better than that of the harmonic balance method (HBM). The results obtained by the present method are considerably better than those obtained by traditional methods, quantitatively and qualitatively, particularly when the excitation frequency is far less than the natural frequency of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BERTRAM, R., BUTTE, M. J., KIEMELI, T., and SHERMAN, A. Topological and phenomenological classification of bursting oscillations. Bulletin of Mathematical Biology, 57(3), 413–439 (1995)

    MATH  Google Scholar 

  2. LV, M., WANG, C. N., REN, G. D., MA, J., and SONG, X. L. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 85(3), 1479–1490 (2016)

    Google Scholar 

  3. IZHIKEVICH, E. M. Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10(6), 1171–1266 (2000)

    MathSciNet  MATH  Google Scholar 

  4. WU, H. G., BAO, B. C., LIU, Z., XU, Q., and JIANG, P. Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dynamics, 83(1/2), 893–903 (2016)

    MathSciNet  Google Scholar 

  5. RULKOV, N. F. Regularization of synchronized chaotic bursts. Physical Review Letters, 86(1), 183 (2001)

    Google Scholar 

  6. NAYFEH, A. H. and BALACHANDRAN, B. Applied Nonlinear Dynamics, John Wiley & Sons, New York (1995)

    MATH  Google Scholar 

  7. ZHANG, H., CHEN, D. Y., XU, B. B., WU, C. Z., and WANG, X. Y. The slow-fast dynamical behaviors of a hydro-turbine governing system under periodic excitations. Nonlinear Dynamics, 87(4), 2519–2528 (2017)

    Google Scholar 

  8. YANG, S. P., CHEN, L. Q., and LI, S. H. Dynamics of Vehicle-Road Coupled System, Science Press, Beijing (2015)

    Google Scholar 

  9. LI, X. H. and HOU, J. Y. Bursting phenomenon in a piecewise mechanical system with parameter perturbation in stiffness. International Journal of Non-Linear Mechanics, 81, 165–176 (2016)

    Google Scholar 

  10. BI, Q. S. The mechanism of bursting phenomena in Belousov-Zhabotinsky (BZ) chemical reaction with multiple time scales. SCIENCE CHINA Technological Sciences, 53(3), 748–760 (2010)

    MATH  Google Scholar 

  11. BERTRAM, R., SMOLEN, P., SHERMAN, A., MEARS, D., and ATWATER, I. A role for calcium release-activated current (CRAC) in cholinergic modulation of electrical activity in pancreatic beta-cells. Biophysical Journal, 68(6), 2323–2332 (1995)

    Google Scholar 

  12. BUTERA, R. J., JR, RINZEL, J., and SMITH, J. C. Models of respiratory rhythm generation in the pre-Bötzinger complex, I: bursting pacemaker neurons. Journal of Neurophysiology, 82(1), 382–397 (1999)

    Google Scholar 

  13. KEPECS, A. and WANG, X. J. Analysis of complex bursting in cortical pyramidal neuron models. Neurocomputing, 32, 181–187 (2000)

    Google Scholar 

  14. LAJOIE, G. and SHEA-BROWN, E. Shared inputs, entrainment, and desynchrony in elliptic bursters: from slow passage to discontinuous circle maps. SIAM Journal on Applied Dynamical Systems, 10(4), 1232–1271 (2011)

    MathSciNet  MATH  Google Scholar 

  15. DESTEXHE, A., MCCORMICK, D. A., and SEJNOWSKI, T. J. A model for 8–10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophysical Journal, 65(6), 2473–2477 (1993)

    Google Scholar 

  16. RINZEL, J. and LEE, Y. S. Dissection of a model for neuronal parabolic bursting. Journal of Mathematical Biology, 25(6), 653–675 (1987)

    MathSciNet  MATH  Google Scholar 

  17. THEODORE, V., MARK, K. A., and TASSO, K. J. Amplitude-modulated bursting: a novel class of bursting rhythms. Physical Review Letters, 117(26), 268101 (2016)

    Google Scholar 

  18. HAN, X., BI, Q., and KURTHS, J. Route to bursting via pulse-shaped explosion. Physical Review E, 98(1), 010201 (2018)

    Google Scholar 

  19. WANG, J., LU, B., LIU, S. Q., and JIANG, X. F. Bursting types and bifurcation analysis in the pre-Botzinger complex respiratory rhythm neuron. International Journal of Bifurcation and Chaos, 27(1), 1750010 (2017)

    MathSciNet  MATH  Google Scholar 

  20. BARRIO, R., RODRIGUEZ, M., SERRANO, S., and SHILNIKOV, A. Mechanism of quasi-periodic lag jitter in bursting rhythms by a neuronal network. Europhysics Letters, 112(3), 38002 (2015)

    Google Scholar 

  21. DESROCHES, M., GUILLAMON, A., PONCE, E., PROHENS, R., RODRIGUES, S., and TERUEL, A. E. Canards, folded nodes, and mixed-mode oscillations in piecewise-linear slow-fast systems. SIAM Review, 58(4), 653–691 (2016)

    MathSciNet  MATH  Google Scholar 

  22. AMBROSIO, B., AZIZ-ALAOUI, M. A., and YAFIA, R. Canard phenomenon in a slow-fast modified Leslie-Gower model. Mathematical Biosciences, 295, 48–54 (2018)

    MathSciNet  MATH  Google Scholar 

  23. VO, T. Generic torus canards. Physica D: Nonlinear Phenomena, 356, 37–64 (2017)

    MathSciNet  MATH  Google Scholar 

  24. MASLENNIKOV, O. V., NEKORKIN, V. I., and KURTHS, J. Basin stability for burst synchronization in small-world networks of chaotic slow-fast oscillators. Physical Review E, 92(4), 042803 (2015)

    Google Scholar 

  25. YU, Y., GAO, Y. B., HAN, X. J., and BI, Q. S. Modified function projective bursting synchronization for fast-slow systems with uncertainties and external disturbances. Nonlinear Dynamics, 79(4), 2359–2369 (2015)

    MathSciNet  Google Scholar 

  26. MBÉ, J. H. T., TALLA, A. F., CHENGUI, G. R. G., COILLET, A., LARGER, L., WOAFO, P., and CHEMBO, Y. K. Mixed-mode oscillations in slow-fast delayed optoelectronic systems. Physical Review E, 91(1), 012902 (2015)

    Google Scholar 

  27. HAN, X. J., BI, Q. S., ZHANG, C., and YU, Y. Delayed bifurcations to repetitive spiking and classification of delay-induced bursting. International Journal of Bifurcation and Chaos, 24(7), 1450098 (2014)

    MathSciNet  MATH  Google Scholar 

  28. STRIZHAK, P. E. and KAWCZYNSKI, A. L. Regularities in complex transient oscillations in the Belousov-Zhabotinsky reaction in a batch reactor. Journal of Physical Chemistry, 99(27), 10830–10833 (1995)

    Google Scholar 

  29. PEDREÑO, S., PISCO, J. P., LARROUY-MAUMUS, G., KELLY, G., and DE CARVALHO, L. P. S. Mechanism of feedback allosteric inhibition of ATP phospho ribosyl transferase. Biochemistry, 51(40), 8027–8038 (2012)

    Google Scholar 

  30. PASE, L., LAYTON, J. E., WITTMANN, C., ELLETT, F., NOWELL, C. J., ROGERS, K. L., HALL, C. J., and KEIGHTLEY, M. C. Neutrophil-delivered myelo peroxidase dampens the hydrogen peroxide burst after tissue wounding in zebra fish. Current Biology, 22(19), 1818–1824 (2012)

    Google Scholar 

  31. HOFBAUER, S., BELLEI, M., SÜDERMANN, A., PIRKER, K. F., DAIMS, H., FURTMÜLLER, P. G., and DJINOVIĆ-CARUGO, K. Redox thermodynamics of high-spin and low-spin forms of chlorite dismutases with diverse subunit and oligomeric structures. Biochemistry, 51(47), 9501–9512 (2012)

    Google Scholar 

  32. LASHINA, E. A., CHUMAKOVA, N. A., CHUMAKOV, G. A., and BORONIN, A. I. Chaotic dynamics in the three-variable kinetic model of CO oxidation on platinum group metals. Chemical Engineering Journal, 154(1–3), 82–87 (2009)

    Google Scholar 

  33. CADENA, A., BARRAGÁN, D., and ÁGREDA, J. Bursting in the Belousov-Zhabotinsky reaction added with phenol in a batch reactor. Journal of the Brazilian Chemical Society, 24(12), 2028–2032 (2013)

    Google Scholar 

  34. XU, J., MIAO, Y., and LIU, J. C. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete and Continuous Dynamical Systems-Series B, 20, 2233–2256 (2015)

    MathSciNet  MATH  Google Scholar 

  35. CERRAI, S. and LUNARDI, A. Averaging principle for nonautonomous slow-fast systems of stochastic reaction-diffusion equations: the almost periodic case. SIAM Journal on Mathematical Analysis, 49(4), 2843–2884 (2017)

    MathSciNet  MATH  Google Scholar 

  36. KOKOTOVIC, P., KHALI, H. K., and O’REILLY, J. Singular Perturbation Methods in Control: Analysis and Design, Academic Press, Orlando (1999)

    Google Scholar 

  37. GUCKENHEIMER, J., HOFFMAN, K., and WECKESSER, W. The forced van der Pol equation I: the slow flow and its bifurcations. SIAM Journal on Applied Dynamical Systems, 2(1), 1–35 (2003)

    MathSciNet  MATH  Google Scholar 

  38. GLIZER, V. Y., FEIGIN, Y., FRIDMAN, E., and MARGALIOT, M. A new approach to exact slow-fast decomposition of singularly perturbed linear systems with small delays. 53rd IEEE Conference on Decision and Control, IEEE, Los Angeles, 451–456 (2014)

    Google Scholar 

  39. FARAZMAND, M. and SAPSIS, T. P. Dynamical indicators for the prediction of bursting phenomena in high-dimensional systems. Physical Review E, 94(3), 032212 (2016)

    Google Scholar 

  40. TZOU, J. C., WARD, M. J., and KOLOKOLNIKOV, T. Slowly varying control parameters, delayed bifurcations, and the stability of spikes in reaction-diffusion systems. Physica D: Nonlinear Phenomena, 290, 24–43 (2015)

    MathSciNet  MATH  Google Scholar 

  41. WIGGINS, S. and SHAW, S. W. Chaos and three-dimensional horseshoes in slowly varying oscillators. Journal of Applied Mechanics, 55(4), 959–968 (1988)

    MathSciNet  MATH  Google Scholar 

  42. NAYFEH, A.H. and MOOK, D.T. Nonlinear Oscillations, John Wiley & Sons, New York (1979)

    MATH  Google Scholar 

  43. PAPANGELO, A. and CIAVARELLA, M. On the limits of quasi-static analysis for a simple Coulomb frictional oscillator in response to harmonic loads. Journal of Sound and Vibration, 339, 280–289 (2015)

    Google Scholar 

  44. DING, H., HUANG, L. L., MAO, X. Y., and CHEN, L. Q. Primary resonance of a traveling viscoelastic beam under internal resonance. Applied Mathematics and Mechanics (English Edition), 38(1), 1–14 (2017) https://doi.org/10.1007/s10483-016-2152-6

    MathSciNet  MATH  Google Scholar 

  45. DING, H., ZHU, M. H., and CHEN, L. Q. Dynamic stiffness method for free vibration of an axially moving beam with generalized boundary conditions. Applied Mathematics and Mechanics (English Edition), 40(7), 911–924 (2019) https://doi.org/10.1007/s10483-019-2493-8

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghong Li.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11672191, 11772206, and U1934201) and the Hundred Excellent Innovative Talents Support Program in Hebei University (No. SLRC2017053)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Tang, J., Wang, Y. et al. Approximate analytical solution in slow-fast system based on modified multi-scale method. Appl. Math. Mech.-Engl. Ed. 41, 605–622 (2020). https://doi.org/10.1007/s10483-020-2598-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2598-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation