Skip to main content

Advertisement

Log in

Semantic similarity estimation from multiple ontologies

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The estimation of semantic similarity between words is an important task in many language related applications. In the past, several approaches to assess similarity by evaluating the knowledge modelled in an ontology have been proposed. However, in many domains, knowledge is dispersed through several partial and/or overlapping ontologies. Because most previous works on semantic similarity only support a unique input ontology, we propose a method to enable similarity estimation across multiple ontologies. Our method identifies different cases according to which ontology/ies input terms belong. We propose several heuristics to deal with each case, aiming to solve missing values, when partial knowledge is available, and to capture the strongest semantic evidence that results in the most accurate similarity assessment, when dealing with overlapping knowledge. We evaluate and compare our method using several general purpose and biomedical benchmarks of word pairs whose similarity has been assessed by human experts, and several general purpose (WordNet) and biomedical ontologies (SNOMED CT and MeSH). Results show that our method is able to improve the accuracy of similarity estimation in comparison to single ontology approaches and against state of the art related works in multi-ontology similarity assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html.

  2. http://www.nlm.nih.gov/mesh/MBrowser.html.

References

  1. Resnik P (1999) Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J Artif Intell Res 11:95–130

    MATH  Google Scholar 

  2. Cilibrasi RL, Vitányi PMB (2006) The Google Similarity Distance. IEEE Trans Knowl Data Eng 19(3):370–383

    Article  Google Scholar 

  3. Batet M, Gibert K, Valls A (2011) Semantic clustering based on ontologies—an application to the study of visitors in a natural reserve. In: ICAART 2011 3rd international conference on agents and artificial intelligence proceedings, vol 1. SciPress, Marrickville, pp 283–289

    Google Scholar 

  4. Batet M (2011) Ontology-based semantic clustering. AI Commun 24(3):291–292

    Google Scholar 

  5. Budanitsky A, Hirst G (2006) Evaluating wordnet-based measures of semantic distance. Comput Linguist 32(1):13–47

    Article  MATH  Google Scholar 

  6. Sánchez D, Isern D (2011) Automatic extraction of acronym definitions from the Web. Appl Intell 34(2):311–327

    Article  Google Scholar 

  7. Sánchez D, Isern D, Millán M (2011) Content annotation for the semantic Web: an automatic web-based approach. Knowl Inf Syst 27(3):393–418

    Article  Google Scholar 

  8. Sánchez D, Moreno A (2008) Learning non-taxonomic relationships from Web documents for domain ontology construction. Data Knowl Eng 63(3):600–623

    Article  Google Scholar 

  9. Sánchez D (2010) A methodology to learn ontological attributes from the Web. Data Knowl Eng 69(6):573–597

    Article  Google Scholar 

  10. Sánchez D, Moreno A (2008) Pattern-based automatic taxonomy learning from the Web. AI Commun 21(1):27–48

    MathSciNet  MATH  Google Scholar 

  11. Li S-T, Tsai F-C (2010) Constructing tree-based knowledge structures from text corpus. Appl Intell 33(1):67–78

    Article  MathSciNet  Google Scholar 

  12. Iannone L, Palmisano I, Fanizzi N (2007) An algorithm based on counterfactuals for concept learning in the semantic Web. Appl Intell 26(2):139–159

    Article  Google Scholar 

  13. Nguyen HA, Al-mubaid H (2006) New ontology-based semantic similarity measure for the biomedical domain. In: IEEE conference on granular computing, GrC 2006, Silicon Valley, USA. IEEE Computer Society, Los Alamitos, pp 623–628

    Chapter  Google Scholar 

  14. Sim KM, Wong PT (2004) Toward agency and ontology for web-based information retrieval. IEEE Trans Syst Man Cybern, Part C, Appl Rev 34(3):257–269

    Article  Google Scholar 

  15. Lee JH, Kim MH, Lee YJ (1993) Information retrieval based on conceptual distance in Is-A hierarchies. J Doc 49(2):188–207

    Google Scholar 

  16. Guarino N (1998) Formal ontology in information systems. In: Guarino N (ed) 1st International conference on formal ontology in information systems, FOIS 1998, Trento, Italy, June 6–8, 1998. Frontiers in artificial intelligence and applications. IOS Press, Amsterdam, pp 3–15

    Google Scholar 

  17. Berners-Lee T, Hendler J, Lassila O (2001) The semantic Web—a new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Sci Am 284(5):34–43

    Article  Google Scholar 

  18. Fellbaum C (1998) WordNet: an electronic lexical database. MIT Press, Cambridge

    MATH  Google Scholar 

  19. Isern D, Moreno A, Sánchez D, Hajnal Á, Pedone G, Varga LZ (2011) Agent-based execution of personalised home care treatments. Appl Intell 34(2):155–180

    Article  Google Scholar 

  20. Baumeister J, Reutelshoefer J, Puppe F (2011) KnowWE: a semantic Wiki for knowledge engineering. Appl Intell 35(3):323–344

    Article  Google Scholar 

  21. Eyharabide V, Amandi A (2012) Ontology-based user profile learning. Appl Intell 36(4):857–869

    Article  Google Scholar 

  22. Mousavi A, Nordin MJ, Othman ZA (2012) Ontology-driven coordination model for multiagent-based mobile workforce brokering systems. Appl Intell 36(4):768–787

    Article  Google Scholar 

  23. Wu Z, Palmer M (1994) Verb semantics and lexical selection. In: 32nd annual meeting of the association for computational linguistics, Las Cruces, New Mexico. Association for Computational Linguistics, Stroudsburg, pp 133–138

    Chapter  Google Scholar 

  24. Li Y, Bandar Z, McLean D (2003) An approach for measuring semantic similarity between words using multiple information sources. IEEE Trans Knowl Data Eng 15(4):871–882

    Article  Google Scholar 

  25. Leacock C, Chodorow M (1998) Combining local context and WordNet similarity for word sense identification. In: WordNet: an electronic lexical database. MIT Press, Cambridge, pp 265–283

    Google Scholar 

  26. Rada R, Mili H, Bichnell E, Blettner M (1989) Development and application of a metric on semantic nets. IEEE Trans Syst Man Cybern 9(1):17–30

    Article  Google Scholar 

  27. Lin D (1998) An information-theoretic definition of similarity. In: Shavlik J (ed) Fifteenth international conference on machine learning, ICML 1998, Madison, Wisconsin, USA, July 24–27, 1998. Morgan Kaufmann, San Mateo, pp 296–304

    Google Scholar 

  28. Jiang JJ, Conrath DW (1997) Semantic similarity based on corpus statistics and lexical taxonomy. In: International conference on research in computational linguistics, ROCLING X, Taipei, Taiwan, Sep, pp 19–33

    Google Scholar 

  29. Resnik P (1995) Using information content to evaluate semantic similarity in a taxonomy. In: Mellish CS (ed) 14th International joint conference on artificial intelligence, IJCAI 1995, Montreal, Quebec, Canada, August 20–25, 1995. Morgan Kaufmann, San Mateo, pp 448–453

    Google Scholar 

  30. Sánchez D, Batet M, Isern D (2011) Ontology-based Information Content computation. Knowl-Based Syst 24(2):297–303

    Article  Google Scholar 

  31. Sánchez D, Batet M, Valls A, Gibert K (2010) Ontology-driven web-based semantic similarity. Inf Sci 35(3):383–413

    Google Scholar 

  32. Sánchez D, Batet M (2011) Semantic similarity estimation in the biomedical domain: an ontology-based information-theoretic perspective. J Biomed Inform 44(5):749–759

    Article  Google Scholar 

  33. Batet M, Sánchez D, Valls A (2011) An ontology-based measure to compute semantic similarity in biomedicine. J Biomed Inform 44(1):118–125

    Article  Google Scholar 

  34. Al-Mubaid H, Nguyen HA (2009) Measuring semantic similarity between biomedical concepts within multiple ontologies. IEEE Trans Syst Man Cybern, Part C, Appl Rev 39(4):389–398

    Article  Google Scholar 

  35. Tversky A (1977) Features of similarity. Psychol Rev 84:327–352

    Article  Google Scholar 

  36. Gangemi A, Pisanelli D, Steve G (1998) Ontology integration: experiences with medical terminologies. In: Guarino N (ed) Formal ontology in information systems. Frontiers in artificial intelligence and applications. IOS Press, Amsterdam, pp 163–178

    Google Scholar 

  37. Weinstein P, Birmingham WP (1999) Comparing concepts in differentiated ontologies. In: 12th Workshop on knowledge acquisition, modeling and management, KAW 1999, Banff, Alberta, Canada

    Google Scholar 

  38. Mena E, Kashyap V, Sheth A, Illarramendi A (1996) OBSERVER: an approach for query processing in global information systems based on interoperation across pre-existing ontologies. In: Proceedings of the first IFCIS international conference on cooperative information systems, CoopIS’96. IEEE Computer Society, Los Alamitos, pp 14–26

    Chapter  Google Scholar 

  39. Bergamaschi B, Castano S, Vermercati SDCD, Montanari S, Vicini M (1998) An intelligent approach to information integration. In: Guarino N (ed) Proceedings of the first international conference formal ontology in information systems, pp 253–268

    Google Scholar 

  40. Rodríguez MA, Egenhofer MJ (2003) Determining semantic similarity among entity classes from different ontologies. IEEE Trans Knowl Data Eng 15(2):442–456

    Article  Google Scholar 

  41. Petrakis EGM, Varelas G, Hliaoutakis A, Raftopoulou P (2006) X-similarity: computing semantic similarity between concepts from different ontologies. J Digit Inf Manag 4:233–237

    Google Scholar 

  42. Ding L, Finin T, Joshi A, Pan R, Cost RS, Peng Y, Reddivari P, Doshi V, Sachs J (2004) Swoogle: a search and metadata engine for the semantic Web. In: Thirteenth ACM international conference on information and knowledge management, CIKM 2004, Washington, DC, USA. ACM Press, New York, pp 652–659

    Chapter  Google Scholar 

  43. Saruladha K, Aghila G, Bhuvaneswary A (2010) Computation of semantic similarity among cross ontological concepts for biomedical domain. J Comput 2:111–118

    Google Scholar 

  44. Sánchez D, Solé-Ribalta A, Batet M, Serratosa F (2012) Enabling semantic similarity estimation across multiple ontologies: an evaluation in the biomedical domain. J Biomed Inform 45(1):141–155

    Article  Google Scholar 

  45. Al-Mubaid H, Nguyen HA (2006) A cluster-based approach for semantic similarity in the biomedical domain. In: 28th Annual international conference of the IEEE engineering in medicine and biology society, EMBS 2006, New York, USA. IEEE Computer Society, Los Alamitos, pp 2713–2717

    Google Scholar 

  46. Bollegala D, Matsuo Y, Ishizuka M (2007) WebSim: a Web-based semantic similarity measure. In: 21st annual conference of the Japanese society for artificial intelligence, JSAI 2007, Miyazaki, Japan, June 18–22, 2007, pp 757–766

    Google Scholar 

  47. Solé-Ribalta A, Serratosa F (2011) Exploration of the labelling space given graph edit distance costs. In: Graph-based representations in pattern recognition. LNCS, vol 6658. Springer, Berlin, pp 164–174

    Chapter  Google Scholar 

  48. Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Berlin

    MATH  Google Scholar 

  49. Gómez-Pérez A, Fernández-López M, Corcho O (2004) Ontological engineering, 2nd edn. Springer, Berlin

    Google Scholar 

  50. Krumhansl C (1978) Concerning the applicability of geometric models to similarity data: the interrelationship between similarity and spatial density. Psychol Rev 85:445–463

    Article  Google Scholar 

  51. Noy NF, Musen MA (1999) SMART: automated support for ontology merging and alignment. In: Gaines BR, Kamam B (eds) Proceedings of the 12th Banff workshop on knowledge acquisition, modeling, and management, Banff, Alberta, Canada, pp 1–20

    Google Scholar 

  52. Lambrix P, Tan H (2007) A tool for evaluating ontology alignment strategies. J Data Semant 182:182–202

    Google Scholar 

  53. Stoilos G, Stamou G, Kollias S (2005) A string metric for ontology alignment. In: 4th International semantic Web conference, pp 624–637

    Google Scholar 

  54. Miller GA, Charles WG (1991) Contextual correlates of semantic similarity. Lang Cogn Process 6(1):1–28

    Article  Google Scholar 

  55. Rubenstein H, Goodenough J (1965) Contextual correlates of synonymy. Commun ACM 8(10):627–633

    Article  Google Scholar 

  56. Pedersen T, Pakhomov S, Patwardhan S, Chute C (2007) Measures of semantic similarity and relatedness in the biomedical domain. J Biomed Inform 40(3):288–299

    Article  Google Scholar 

  57. Hliaoutakis A (2005) Semantic similarity measures in the MESH ontology and their application to information retrieval on medline. Diploma Thesis. Technical Univ. of Crete (TUC), Dept. of Electronic and Computer Engineering, Crete, Greece

Download references

Acknowledgements

This work was partly funded by the Spanish Government through the projects CONSOLIDER INGENIO 2010 CSD2007-0004 “ARES”, DAMASK (TIN2009-11005), and by the Government of Catalonia under grants 2009 SGR 1135 and 2009 SGR 01523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montserrat Batet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batet, M., Sánchez, D., Valls, A. et al. Semantic similarity estimation from multiple ontologies. Appl Intell 38, 29–44 (2013). https://doi.org/10.1007/s10489-012-0355-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-012-0355-y

Keywords

Navigation