Skip to main content
Log in

Penalized collaborative representation based classification for face recognition

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The collaborative representation classification (CRC) exhibits superiority in both accuracy and computational efficiency. However, when representing the test sample by a linear combination of the training samples, the CRC does not account for the following: the probability of the test sample being from the same class as the training sample far from it is small. In this paper, we propose the algorithm, Penalized Collaborative Representation (PCR), which first uses the original collaborative representation to compute the distance between each training and test sample, and then treats these distances as penalized coefficients to design the penalized collaborative representation. The experimental results on multiple face databases show that our classifier, designed according PCR, has a very satisfactory classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhao W, Chellappa R, Rosenfeld A, Phillips P (2003) Face recognition: a literature survey. ACM Computing Serveys 42(10):399–458

    Article  Google Scholar 

  2. Samal A, Iyengar PA (1992) Automatic recognition and analysis of human faces and facial expression: A survey. Pattern Recog 25(1):65–77

    Article  Google Scholar 

  3. Makwana RM (2010) Illumination invariant face recognition: A survey of passive methods. Procedia Computer Science 2:101– 110

    Article  Google Scholar 

  4. Phillips PJ, Flynn PJ, Scruggs WT, Bowyer KW, Chang J, Hoffman K, Marques J, Min J, Worek WJ (2005) Overview of the face recognition grand challenge. In: IEEE Conference Computer Vision and Pattern Recognition, pp 947–954

  5. Turk M, Pentland A (1991) Eigenfaces for Recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  6. Setes DL, Weng J (1996) Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(8):831–836

    Article  Google Scholar 

  7. Jin Z, Yang JY, Hu ZS, Lou Z (2001) Face recognition based on uncorrelated discriminant transformation. Pattern Recognit 34(7):1405–1416

    Article  MATH  Google Scholar 

  8. Xu Y, Zhang D, Song F, Yang JY, Jin Z, Li M (2007) A method for speeding up feature extraction based on KPCA. Neurocomputing 70(4–6):1056–1061

    Article  Google Scholar 

  9. Liao W, Pizurica A, Philips W, Pi Y (2010) A fast iterative kernel PCA feature extraction for hyperspectral images. In: Proceedings of the 17th IEEE International Conference on Image Processing, pp 1317–1320

  10. Yang J, Zhang D, Frangi A, Yang JY (2004) Two-Dimensional PCA: A New Approach to Apperaance-Based Face Representation and Recognition. IEEE Transaction on Pattern Analysis and Machine Intelligence 26(1):131–137

    Article  Google Scholar 

  11. Yang J, et al. (2005) Two-dimensional discriminant transform for face recognition. Pattern Recognit 38 (7):1125–1129

    Article  MATH  Google Scholar 

  12. Zhao C, Miao D, Lai Z, Gao C, Liu C, Yang J (2013) Two-dimensional color uncorrelated discriminant analysis for face recognition. Neurocomputing 113(3):251–261

    Article  Google Scholar 

  13. Xu Y, Fang X, Zhu Q, Chen Y, You J, Liu H (2014) Modified minimum squared error algorithm for robust classification and face recognition experiments. Neurocomputing 135(5):253– 261

    Article  Google Scholar 

  14. Shen F, Hasegawa O (2008) A fast nearest neighbor classifier based on self-organizing incremental neural network. IEEE Transactions on Neural Networks 21(9):1537–1547

    Article  MATH  Google Scholar 

  15. li SZ, Lu J (1999) Face recognition using the nearest feature line method. IEEE Transactions on Neural Networks 10(2):439–443

    Article  Google Scholar 

  16. Yang J, Lou Z, Jin Z, Yang JY (2008) Minimal Local Reconstruction Error Measure Based Discriminant Feature Extraction and Classification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 1–6

  17. Xu Y, Fang X, Li X, Yang J, You J, Liu H, Teng S (2014) Data uncertainty in face recognition. IEEE Transactions on Cybernetics 40(9):1950–1961

    Article  Google Scholar 

  18. Togneri R (2010) Linear Regression for Face Recognition. IEEE Trans Pattern Analysis and Machine Intelligence 32(10):2166–2121

    Google Scholar 

  19. Wright J, Yang Y, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Analysis and Machine Intelligence 31(2):210–227

    Article  Google Scholar 

  20. Zhang L, yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition?. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 471–478

  21. Han H, Shan S, Chen X, Gao W (2013) A comparative study on illuminantion preprocessing in face recognition. Pattern Recognit 46(6):1691–1699

    Article  Google Scholar 

  22. Tariq U, Yang J, Huang TS (2014) Supervised super-vector encoding for facial expression recognition. Pattern Recogn Lett 46(1):89–95

    Article  Google Scholar 

  23. Lu J, Plataniotis KN, Venetsanopoulos AN (2003) Regularized discriminant analysis for the small sample size problem in face recognition. Pattern Recogn Lett 24(15):3079–3087

    Article  Google Scholar 

  24. Xu Y, Li X, Yang J, Zhang D (2014) Integrate the original face image and its mirror image for face recognition. Neurocomputing 131:191–199

    Article  Google Scholar 

  25. Hsieh PC, Tung PC (2010) Shadow compensation based on facial symmetry and image average for robust face recognition. Neurocomputing 73(13–15):2708–2717

    Article  Google Scholar 

  26. Xu Y, Zhu X, Li Z, Liu G, Lu Y, Liu H (2013) Using the original and ‘symmetrical face’ training samples to perform representation based two-step face recognition. Pattern Recognit 46(4):1151–1158

    Article  Google Scholar 

  27. Song YJ, Kim YG, Chang UD, Kwon HB (2006) Face recognition robust to left/right shadows; facial symmetry. Pattern Recognit 39(8):1542–1545

    Article  Google Scholar 

  28. Xu Y, Zhang D, Yang J, Yang JY (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Transactions on Circuits and Systems for Video Technology 21(8):1255–1262

    Google Scholar 

  29. Timofte R, Gool LV (2014) Adaptive and Weighted Collaborative Representations for image classification. Pattern Recogn Lett 43:127–135

    Article  Google Scholar 

  30. Xu Y, Li X, Yang J, Lai Z, Zhang D (2013) Integrating conventional and inverse representation for face recognition 44(9):1738–746

  31. Fan ZZ, Ni M, Zhu Q, Liu E (2015) Weighted sparse representation for face recognition. Neurocomputing 151(1,3):304–309

    Article  Google Scholar 

  32. Xu Y, Zhang D, Yang J, Yang JY (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Transactions on Circuits and Systems for Video Technology 21(8):1255–1262

    Google Scholar 

  33. Timofte R, Gool LV (2014) Adaptive and Weighted Collaborative Representations for image classification. Pattern Recognit Lett 43(1):127–135

    Article  Google Scholar 

  34. Yu K, Zhang T, Gong Y (2009) Nonlinear Learning using Local Coordinate Coding. NIPS:2223–2231

  35. Yu K, Zhang T (2010) Improved Local Coordinate Coding using Local Tangents. ICML:1215–1222

  36. Wang J, Yang J, Yu K, Lv F, Huang TS, Gong Y (2010) Locality-constrained Linear Coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3360–3367

  37. http://www.cam-orl.co.uk

  38. Zou J, Ji Q, Nagy G (2007) A comparative study of local matching approach for face recognition. IEEE Trans Image Process 16(9):2617–2628

    Article  MathSciNet  Google Scholar 

  39. Martinez AM, Benavente R (1998) The AR Face Recognition. CVC Technical Report, No. 24

  40. Martinez AM, Benavente R (2003) The AR Face Database. http://rvll.ecn.purdue.edu/~!aleix/aleix_face_DB.html

Download references

Acknowledgments

This work is partially supported by National Natural Science Foundation of China under Grant Nos. 61373063, 61233011, 61125305, 61375007, 61220301, and by National Basic Research Program of China under Grant No. 2014CB349303, and supported by the 2013 Higher School Discipline and Specialty Construction Project in Guangdong Province (2013LYM 0055 and 2013KJCX0127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Wang, X., Jin, Z. et al. Penalized collaborative representation based classification for face recognition. Appl Intell 43, 722–731 (2015). https://doi.org/10.1007/s10489-015-0672-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-015-0672-z

Keywords

Navigation