Skip to main content

Advertisement

Log in

WD2O: a novel wind driven dynamic optimization approach with effective change detection

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Dynamic optimization holds promise to solve real world problems that require adaptation to dynamic environments. The challenge is to track optima in an ever changing landscape. This paper describes a new computational intelligence approach to dynamic optimization termed as wind driven dynamic optimization (WD2O). Basically, it relies on an enhanced Multi-Region Modified Wind Driven Optimization (MR-MWDO) model and exhibits four main features. First, a multi-region approach is used to classify regions of the search space into promising and non-promising areas with accordance to low and high pressure regions in the natural model. Second, it uses an effective collision avoidance strategy to prevent collision between sub-populations. Third, it allows cost effective change detection. Fourth, it maintains two types of populations in order to achieve better balanced search. The proposed WD2O has been successfully applied to Moving Peaks Benchmark (MPB) problem. An extensive experimental study has shown that WD2O outperforms significantly the first prototype MR-MWDO. Furthermore, it has shown very competitive results compared to state of the art methods and has achieved the best performance for high dimensional problems while keeping an appreciable time complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wolpert D H, Macready W G (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. doi:10.1109/4235.585893

    Article  Google Scholar 

  2. Fister J I, Yang X S, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. Elektroteh Vestn 80(3):1–7. arXiv:1307.4186

    MATH  Google Scholar 

  3. Du K L, Swamy MNS (2016) Search and optimization by metaheuristics: techniques and algorithms inspired by nature, Springer International Publishing

  4. Toffolo A, Benini E (2003) Genetic diversity as an objective in multi-objective evolutionary algorithms. Evol Comput 11(2):151–167. doi:10.1162/106365603766646816

    Article  Google Scholar 

  5. Yang S, Yao X (2005) Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput 9(11):815–834. doi:10.1007/s00500-004-0422-3

    Article  MATH  Google Scholar 

  6. Bui L, Abbass H, Branke J (2005) Multiobjective optimization for dynamic environments, IEEE

  7. Blackwell T M, Branke J (2006) Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans Evol Comput 10(4):459–472. doi:10.1109/TEVC.2005.857074

    Article  Google Scholar 

  8. Uyar A S, Harmanci A E (2005) A new population based adaptive domination change mechanism for diploid genetic algorithms in dynamic environments. Soft Comput 9(11):803–814. doi:10.1007/s00500-004-0421-4

    Article  MATH  Google Scholar 

  9. Yang S (2006) Associative memory scheme for genetic algorithms in dynamic environments Rothlauf F (ed), Springer, Heidelberg

  10. Mavrovouniotis M, Yang S (2011) Memory-based immigrants for ant colony optimization in changing environments Cea DC (ed), Springer, Heidelberg

  11. Li X, Branke J, Blackwell TM (2006) Particle swarm with speciation and adaptation in a dynamic environment. In: The genetic and evolutionary computation conference. ACM, New York, pp 51–58

  12. Fernandez-Marquez J L, Arcos JL (2010) Adapting particle swarm optimization in dynamic and noisy environments. In: IEEE congr. evol. comput. IEEE, pp 1–8

  13. Boulesnane A, Meshoul S (2014) A new multi-region modified wind driven optimization algorithm with collision avoidance for dynamic environments Tan Y, Shi Y, Coello C A (eds), Springer, Heidelberg

  14. Hatzakis I, Wallace D (2006) Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach, ACM, New York

  15. Rossi C, Abderrahim M, Díaz J C (2008) Tracking moving optima using kalman-based predictions. Evol Comput 16(1):1–30. doi:10.1162/evco.2008.16.1.1

    Article  Google Scholar 

  16. Simões A, Costa E (2014) Prediction in evolutionary algorithms for dynamic environments. Soft Comput 18(8):1471–1497. doi:10.1007/s00500-013-1154-z

    Article  Google Scholar 

  17. Chao C W, Fang S C, Liao C J (2012) A tropical cyclone-based method for global optimization. J Ind Manag Optim 8(1):103–115. doi:10.3934/jimo.2012.8.103

    Article  MathSciNet  MATH  Google Scholar 

  18. Yan G W, Hao Z J (2013) A novel optimization algorithm based on atmosphere clouds model. Int J Comp Intel Appl 12:1–16. doi:10.1142/S1469026813500028

    Article  Google Scholar 

  19. Bayraktar Z, Komurcu M, Bossard J A, Werner D H (2013) The wind driven optimization technique and its application in electromagnetics. IEEE Trans Antennas Propag 61 (5):2745–2757. doi:10.1109/TAP.2013.2238654

    Article  MathSciNet  Google Scholar 

  20. Boulesnane A, Meshoul S (2015) A modified wind driven optimization model for global continuous optimization Onieva E, Santos I, Osaba E, Quintian H, Corchado E (eds), Springer, Bilbao, Spain

  21. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Schölkopf B, Platt J, Hofmann T (eds) Symposium on micro machine and human science. IEEE, Nagoya, Japan, pp 39–43

  22. Christopher J J, Nehemiah H K, Kannan A (2015) A swarm optimization approach for clinical knowledge mining. Comput Methods Progr Biomed 121(3):137–148. doi:10.1016/j.cmpb.2015.05.007

    Article  Google Scholar 

  23. Bhandari A K, Kumar A, Singh G K (2015) Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Expert Syst Appl 42(22):8707–8730. doi:10.1016/j.eswa.2015.07.025

    Article  Google Scholar 

  24. Mahto S K, Choubey A, Suman S (2015) Linear array synthesis with minimum side lobe level and null control using wind driven optimization, IEEE, Guntur, India

  25. Alba E, Nakib A, Siarry P (2013) Metaheuristics for dynamic optimization. Springer, Berlin

    Book  Google Scholar 

  26. Nguyen T T, Yang S, Branke J (2012) Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol Comput 6:1–24. doi:10.1016/j.swevo.2012.05.001

    Article  Google Scholar 

  27. James R H, Gregory J H (2013) An introduction to dynamic meteorology. Academic Press, Amsterdam

    Google Scholar 

  28. Blackwell T M (2007) Particle swarm optimization in dynamic environments. In: Yang S, Ong YS, Jin Y (eds) Evolutionary computation in dynamic and uncertain environments. Springer, Berlin, pp 29–49

  29. Nguyen T T, Yang S, Branke J, Yao X (2013a) Evolutionary dynamic optimization: methodologies Yang S, Yao X (eds), Springer, Berlin

  30. Janson S, Middendorf M (2006) A hierarchical particle swarm optimizer for noisy and dynamic environments. Genet Program Evolvable Mach 7(4):329–354. doi:10.1007/s10710-006-9014-6

    Article  Google Scholar 

  31. Morrison R W (2004) Designing evolutionary algorithms for dynamic environments. Springer, Berlin

    Book  MATH  Google Scholar 

  32. Richter H (2009) Detecting change in dynamic fitness landscapes, IEEE, Trondheim

  33. Singh H K, Isaacs A, Nguyen T T, Ray T, Yao X (2009) Performance of infeasibility driven evolutionary algorithm (idea) on constrained dynamic single objective optimization problems Tyrrell A (ed), IEEE Press, Piscataway

  34. Du Plessis M C, Engelbrecht A P (2013) Self-adaptive differential evolution for dynamic environments with fluctuating numbers of optima Alba E, Nakib A, Siarry P (eds), Springer, Berlin

  35. Kamosi M, Hashemi A B, Meybodi MR (2010a) A new particle swarm optimization algorithm for dynamic environments. In: Swarm, evolutionary, and memetic computing lecture notes in computer science. Springer, India, pp 129–138

  36. Mukherjee R, Debchoudhury S, Swagatam D (2016) Modified differential evolution with locality induced genetic operators for dynamic optimization. Eur J Oper Res 253(2):337–355. doi:10.1016/j.ejor.2016.02.042

    Article  MATH  Google Scholar 

  37. Yang S, Li C (2010) A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans Evol Comput 14(6):959–974. doi:10.1109/TEVC.2010.2046667

    Article  Google Scholar 

  38. Nguyen TT, Jenkinson I, Yang Z (2013b) Solving dynamic optimisation problems by combining evolutionary algorithms with kd-tree, IEEE

  39. Branke J (1999) Memory enhanced evolutionary algorithms for changing optimisation problems, Springer, Washington, DC

  40. Branke J, Schmeck H (2003) Designing evolutionary algorithms for dynamic optimization problems Tsutsui S, Ghosh A (eds), Springer, Berlin Heidelberg

  41. Du Plessis M C, Engelbrecht A P (2012) Differential evolution for dynamic environments with unknown numbers of optima. J Glob Optim 55(1):73–99. doi:10.1007/s10898-012-9864-9

    Article  MathSciNet  MATH  Google Scholar 

  42. Rezazadeh I, Meybodi M R, Naebi A (2011) Adaptive particle swarm optimization algorithm for dynamic environments. In: Tan Y, Shi Y, Chai Y, Wang G (eds) Advances in swarm intelligence. Springer, Heidelberg, pp 120–129

  43. Lung R I, Dumitrescu D (2010) Evolutionary swarm cooperative optimization in dynamic environments. Nat Comput 9(1):83–94. doi:10.1007/s11047-009-9129-9

  44. Li C, Yang S (2012) A general framework of multipopulation methods with clustering in undetectable dynamic environments. IEEE Trans Evol Comput 16(4):556–577. doi:10.1109/TEVC.2011.2169966

    Article  Google Scholar 

  45. Kamosi M, Hashemi A B, Meybodi MR (2010b) A hibernating multi-swarm optimization algorithm for dynamic environments, IEEE, Fukuoka

Download references

Acknowledgments

This work has been supported by the National Research Project CNEPRU under grant N: B*07120140037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdennour Boulesnane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulesnane, A., Meshoul, S. WD2O: a novel wind driven dynamic optimization approach with effective change detection. Appl Intell 47, 488–504 (2017). https://doi.org/10.1007/s10489-017-0895-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-0895-2

Keywords

Navigation