Skip to main content
Log in

Nonlinear system identification based on ANFIS-Hammerstein model using Gravitational search algorithm

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The identification of real-world plants and processes, which are nonlinear in nature, represents a challenging problem. Currently, the Hammerstein model is one of the most popular nonlinear models. A Hammerstein model involves the combination of a nonlinear element and a linear dynamic system. On the other hand, the Adaptive-network-based fuzzy inference system (ANFIS) represents a powerful adaptive nonlinear network whose architecture can be divided into a nonlinear block and a linear system. In this paper, a nonlinear system identification method based on the Hammerstein model is introduced. In the proposed scheme, the system is modeled through the adaptation of an ANFIS scheme, taking advantage of the similarity between it and the Hammerstein model. To identify the parameters of the modeled system, the proposed approach uses a recent nature-inspired method called the Gravitational Search Algorithm (GSA). Compared to most existing optimization algorithms, GSA delivers a better performance in complex multimodal problems, avoiding critical flaws such as a premature convergence to sub-optimal solutions. To show the effectiveness of the proposed scheme, its modeling accuracy has been compared with other popular evolutionary computing algorithms through numerical simulations on different complex models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Piroddi L, Farina M, Lovera M (2012) Black box model identification of nonlinear input–output models: a Wiener–Hammerstein benchmark. Control Eng Pract 20(11):1109–1118

    Article  Google Scholar 

  2. Jurado F (2006) A method for the identification of solid oxide fuel cells using a Hammerstein model. J Power Sources 154(1):145–152

    Article  Google Scholar 

  3. Zhang X, Tan Y (2005) Modelling of ultrasonic motor with dead-zone based on Hammerstein model structure. J Zheijang Univ Sci A 9(1):58–64

    Article  MATH  Google Scholar 

  4. Gilabert P, Montoro G, Bertran E (2005) On the wiener and Hammerstein models for power amplifier predistortion. Asia-Pacific Microw Conf Proceedings, APMC 2(2):5–8

    Google Scholar 

  5. Huo H, Zhu X, Hu W, Tu H, Li J, Yang J (2008) Nonlinear model predictive control of SOFC based on a Hammerstein model. J Power Sources 185(1):38–344

    Article  Google Scholar 

  6. Smith JG, Kamat S, Madhavan KP (2007) Modeling of pH process using wavenet based Hammerstein model. J Process Control 17(6):551–561

    Article  Google Scholar 

  7. Cui M, Liu H, Li Z, Tang Y, Guan X (2014) Identification of Hammerstein model using functional link artificial neural network. Neurocomputing 142:419–428

    Article  Google Scholar 

  8. Tang Y, Li Z, Guan X (2014) Identification of nonlinear system using extreme learning machine based Hammerstein model. Commun Nonlinear Sci Numer Simul 19(9):3171–3183

    Article  MathSciNet  Google Scholar 

  9. Nanda SJ, Panda G, Majhi B (2010) Improved identification of Hammerstein plants using new CPSO and IPSO algorithms. Expert Syst Appl 37(10):6818–6831

    Article  Google Scholar 

  10. Gotmare A, Patidar R, George NV (2015) Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model. Expert Syst Appl 42(5):2538–2546

    Article  Google Scholar 

  11. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  12. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC 15:116–132

    Article  MATH  Google Scholar 

  13. Vairappan C, Tamura H, Gao S, Tang Z (2009) Batch type local search-based adaptive neuro-fuzzy inference system (ANFIS) with self-feedbacks for time-series prediction. Neurocomputing 72(7–9):1870–1877

    Article  Google Scholar 

  14. Mohandes M, Rehman S, Rahman SM (2011) Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl Energy 88(11):4024–4032

    Article  Google Scholar 

  15. Salahshoor K, Kordestani M, Khoshro MS (2010) Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers. Energy 35(12):5472–5482

    Article  Google Scholar 

  16. Engin SN, Kuvulmaz J, Ömurlü VE (2004) Fuzzy control of an ANFIS model representing a nonlinear liquid-level system. Neural Comput Appl 13(3):202–210

    Article  MATH  Google Scholar 

  17. Wu XJ, Zhu XJ, Cao GY, Tu HY (2008) Nonlinear modeling of a SOFC stack based on ANFIS identification. Simul Model Pract Theory 16(4):399–409

    Article  Google Scholar 

  18. Zelinka I (2015) A survey on evolutionary algorithms dynamics and its complexity – mutual relations, past, present and future. Swarm Evol Comput 25:2–14

    Article  Google Scholar 

  19. Al-Duwaish HN (2011) Nonlinearity structure using particle swarm optimization. Arab J Sci Eng 36(7):1269–1276

    Article  Google Scholar 

  20. Mete S, Ozer S, Zorlu H (2016) System identification using Hammerstein model optimized with differential evolution algorithm. AEU Int J Electron Commun 70(12):1667–1675

    Article  MATH  Google Scholar 

  21. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  22. Farivar F, Shoorehdeli MA (2016) Stability analysis of particle dynamics in gravitational search optimization algorithm. Inf Sci 337–338:25–43

    Article  Google Scholar 

  23. Yazdani S, Nezamabadi-Pour H, Kamyab S (2014) A gravitational search algorithm for multimodal optimization. Swarm Evol Comput 14:1–14

    Article  Google Scholar 

  24. Yazdani A, Jayabarathi T, Ramesh V, Raghunathan T (2013) Combined heat and power economic dispatch problem using firefly algorithm. Front Energy 7(2):133–139

    Article  Google Scholar 

  25. Kumar V, Chhabra JK, Kumar D (2014) Automatic cluster evolution using gravitational search algorithm and its application on image segmentation. Eng Appl Artif Intell 29:93–103

    Article  Google Scholar 

  26. Zhang W, Niu P, Li G, Li P (2015) Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm. Knowledge-Based Syst 39:34–44

    Article  Google Scholar 

  27. Karaboga D, Kaya E (2016) An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training. Appl Soft Comput 49:423–436

    Article  Google Scholar 

  28. Sarkheyli A, Zain AM, Sharif S (2015) Robust optimization of ANFIS based on a new modified GA. Neurocomputing 166:357–366

    Article  Google Scholar 

  29. Wei LY (2013) A GA-weighted ANFIS model based on multiple stock marketvolatility causality for TAIEX forecasting. Appl Soft Comput 13(2):911–920

    Article  Google Scholar 

  30. Palupi Rini D, Mariyam Shamsuddin S, Sophiayati Yuhaniz S (2016) Particle swarm optimization for ANFIS interpretability and accuracy. Soft Comput 20(1):251–262

    Article  Google Scholar 

  31. Wang JS, Ning CX (2015) ANFIS Based time series prediction method of bank cash flow optimized by adaptive population activity PSO algorithm. Information 6(3):300–313

    Article  Google Scholar 

  32. Liu P, Leng W, Fang W (2013) Training ANFIS model with an improved quantum-behaved particle swarm optimization algorithm. Math Probl Eng 2013 (2013)

  33. Catalão JPS, Pousinho HMI, Mendes VMF (2011) Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting. IEEE Trans Power Syst 26(1):137–144

    Article  Google Scholar 

  34. Suja Priyadharsini S, Edward Rajan S, Femilin Sheniha S (2015) A novel approach for the elimination of artefacts from EEG signals employing an improved Artificial Immune System algorithm. J Exp Theor Artif Intell 21:1–21

    Google Scholar 

  35. Gunasekaran M, Ramaswami KS (2011) A fusion model integrating ANFIS and artificial immune algorithm for forecasting Indian stock market. J Appl Sci 11(16):3028–3033

    Article  Google Scholar 

  36. Asadollahi-Baboli M (2012) In silico prediction of the aniline derivatives toxicitiesto Tetrahymena pyriformis using chemometrics tools. Toxicol Environ Chem 94(10):2019–2034

    Article  Google Scholar 

  37. Teimouri R, Baseri H (2014) Optimization of magnetic field assisted EDM using the continuous ACO algorithm. Appl Soft Comput 14:381–389

    Article  Google Scholar 

  38. Varshini GS, Raja SC, Venkatesh P (2015) Design of ANFIS controller for power system stability enhancement using FACTS device. In: Power electronics and renewable energy systems. Springer, India, pp 1163–1171

    Google Scholar 

  39. Bhavani M, Selvi K, Sindhumathi L (2014) Neuro fuzzy load frequency control in a competitive electricity market using BFOA tuned SMES and TCPS. In: Swarm, evolutionary, and memetic computing. Springer International Publishing, pp 373–385

    Google Scholar 

  40. Azarbad M, Azami H, Sanei S, Ebrahimzadeh A (2014) New neural network-based approaches for GPS GDOP classification based on neuro-fuzzy inference system, radial basis function, and improved bee algorithm. Appl Soft Comput 25:285–292

    Article  Google Scholar 

  41. Rani MAF, Sankaragomathi B (2015) Performance enhancement of PID controllers by modern optimization techniques for speed control of PMBL DC motor. Res J Appl Sci Eng Technol 10(10):1154–1163

    Google Scholar 

  42. Chen JF, Do QH (2014) A cooperative cuckoo search–hierarchical adaptive neuro-fuzzy inference system approach for predicting student academic performance. J Intell Fuzzy Syst 27(5):2551–2561

    Google Scholar 

  43. Khazraee SM, Jahanmiri AH, Ghorayshi SA (2011) Model reduction and optimization of reactive batch distillation based on the adaptive neuro-fuzzy inference system and differential evolution. Neural Comput Appl 20(2):239–248

    Article  Google Scholar 

  44. Zangeneh AZ, Mansouri M, Teshnehlab M, Sedigh AK (2011) Training ANFIS system with DE algorithm. In: Fourth international workshop on advanced computational intelligence (IWACI), 2011. IEEE, pp 308–314

    Chapter  Google Scholar 

  45. Afifi F, Badrul Anuar N, Shamshirband S, Raymond KK (2016) Choo, DyHAP: dynamic hybrid ANFIS-PSO approach for predicting mobile malware. Plose one. doi:10.1371/journal.pone.0162627

  46. Nanda SJ, Panda G, Majhi B (2010) Improved identification of Hammerstein plants using new CPSO and IPSO algorithms. Expert Syst Appl 37(10):6818–6831

    Article  Google Scholar 

  47. Gotmare A, Patidar R, George NV (2015) Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model. Expert Syst Appl 42:2538–2546

    Article  Google Scholar 

  48. Gao X, Ren X, Zhu C, Zhang C (2015) Identification and control for Hammerstein systems with hysteresis non-linearity. IET Control Theory Appl 9(13):1935–1947

    Article  MathSciNet  Google Scholar 

  49. Voros J (2005) Identification of Hammerstein systems with time-varying piecewise-linear characteristics. IEEE Trans Circuits Syst Express Briefs 52(12):865–869

    Article  Google Scholar 

  50. Greblicki W (1989) Non-parametric orthogonal series identification of Hammerstein systems. Journal International Journal of Systems Science 20(12):2355–2367

    Article  MathSciNet  MATH  Google Scholar 

  51. Eskinat E, Johnson SH, Luyben WL (1991) Use of Hammerstein models in identification of nonlinear systems. AIChE J 37(2):255268

    Article  Google Scholar 

  52. Storn R, Price K (1995) Differential evolution -a simple and efficient adaptive scheme for global optimisation over continuous spaces. TechnicalReport TR-95–012, ICSI, Berkeley, CA

  53. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, vol 4, pp 1942–1948

  54. Hachino T, Deguchi K, Takata S (2004) Identification of Hammerstein model using radial basis function networks and genetic algorithm. In: Control conference 2004. Fifth Asian, vol 1, pp 124–129

  55. Nanda SJ, Panda G, Majhi B (2010) Improved identification of Hammerstein plants using new CPSO and IPSO algorithms. Expert Syst Appl 37(10):6818–6831

    Article  Google Scholar 

  56. Salomon R (1998) Evolutionary algorithms and gradient search: similarities and differences. IEEE Trans Evol Comput 2(2):45–55

    Article  Google Scholar 

  57. Hatanaka T, Uosaki K, Koga M (2004) Evolutionary computation approach to block oriented nonlinear model identification. In: 5th Asian Control Conference, Malaysia, vol 1, pp 90–96

  58. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83

    Article  MathSciNet  Google Scholar 

  59. Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: a case study on the CEC’2005 Special session on real parameter optimization. J Heurist 15:617–644

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuevas, E., Díaz, P., Avalos, O. et al. Nonlinear system identification based on ANFIS-Hammerstein model using Gravitational search algorithm. Appl Intell 48, 182–203 (2018). https://doi.org/10.1007/s10489-017-0969-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-0969-1

Keywords

Navigation