Skip to main content
Log in

Simplicial finite elements in higher dimensions

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

Over the past fifty years, finite element methods for the approximation of solutions of partial differential equations (PDEs) have become a powerful and reliable tool. Theoretically, these methods are not restricted to PDEs formulated on physical domains up to dimension three. Although at present there does not seem to be a very high practical demand for finite element methods that use higher dimensional simplicial partitions, there are some advantages in studying the methods independent of the dimension. For instance, it provides additional insights into the structure and essence of proofs of results in one, two and three dimensions. In this survey paper we review some recent progress in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Achchab, S. Achchab, O. Axelsson, and A. Souissi: Upper bound of the constant in strengthened C.B.S. inequality for systems of linear partial differential equations. Numer. Algorithms 32 (2003), 185–191.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Achchab, O. Axelsson, A. Laayouni, and A. Souissi: Strengthened Cauchy-Bunyakowski-Schwarz inequality for a three-dimensional elasticity system. Numer. Linear Algebra Appl. 8 (2001), 191–205.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. N. Arnold, R. Falk, and R. Winther: Finite element exterior calculus. Acta Numer. 15 (2006), 1–135.

    Article  MATH  MathSciNet  Google Scholar 

  4. O. Axelsson: On multigrid methods of the two-level type. In: Multigrid Methods. Lecture Notes in Mathematics, Vol. 960 (W. Hackbusch, U. Trotenberg, eds.). Springer-Verlag, Berlin, 1982, pp. 352–367.

    Chapter  Google Scholar 

  5. O. Axelsson, R. Blaheta: Two simple derivations of universal bounds for the CBS inequality constant. Appl. Math. 49 (2004), 57–72.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Blaheta: Nested tetrahedral grids and strengthened CBS inequality. Numer. Linear Algebra Appl. 10 (2003), 619–637.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Blaheta, S. Margenov, and M. Neytcheva: Uniform estimates of the constant in the strengthened CBS inequality for anisotropic non-conforming FEM systems. Numer. Linear Algebra Appl. 11 (2004), 309–326.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Braess: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edition. Cambridge University Press, Cambridge, 2001, pp. 309–326.

    MATH  Google Scholar 

  9. J. H. Brandts, S. Korotov, and M. Křížek: The strengthened Cauchy-Bunyakowski-Schwarz inequality for n-simplicial linear finite elements. In: Springer Lecture Notes in Computer Science, Vol. 3401. Springer-Verlag, Berlin, 2005, pp. 203–210.

    Google Scholar 

  10. J. H. Brandts, S. Korotov, and M. Křížek: Survey of discrete maximum principles for linear elliptic and parabolic problems. In: Proc. Conf. ECCOMAS 2004 (P. Neittaanmäki et al., eds.). Univ. of Jyväskylä, 2004, pp. 1–19.

  11. J. H. Brandts, S. Korotov, and M. K Křížek: Dissection of the path-simplex in ℝn into n path-subsimplices. Linear Algebra Appl. 421 (2007), 382–393.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. H. Brandts, M. Křížek: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003), 489–505.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15. Springer-Verlag, New York, 1994.

    Google Scholar 

  14. P. Ciarlet: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  15. C. M. Chen: Optimal points of stresses for tetrahedron linear element. Nat. Sci. J. Xiangtan Univ. 3 (1980), 16–24. (In Chinese.)

    Google Scholar 

  16. COMSOL, Multiphysics Version 3.3 (2006). Sweden, http://www.femlab.com.

  17. H. S. M. Coxeter: Trisecting an orthoscheme. Comput. Math. Appl. 17 (1989), 59–71.

    Article  MATH  MathSciNet  Google Scholar 

  18. FEMLAB version 2.2 (2002). Multiphysics in Matlab, for use with Matlab. COMSOL, Sweden, http://www.femlab.com.

  19. H. Fujii: Some remarks on-nite element analysis of time-dependent field problems. In: Theory Pract. Finite Elem. Struct. Anal. Univ. Tokyo Press, Tokyo, 1973, pp. 91–106.

    Google Scholar 

  20. G. Goodsell: Pointwise superconvergence of the gradient for the linear tetrahedral element. Numer. Methods Partial Differ. Equations 10 (1994), 651–666.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Karátson, S. Korotov: Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions. Numer. Math. 99 (2005), 669–698.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Křížek, Q. Lin: On the diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3 (1995), 59–69.

    MATH  MathSciNet  Google Scholar 

  23. M. Křížek, P. Neittaanmäki: On superconvergence techniques. Acta Appl. Math. 9 (1987), 175–198.

    Article  MATH  MathSciNet  Google Scholar 

  24. Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates. Proc. Conf. Univ. of Jyväskylä, 1996. Lecture Notes in Pure and Applied Mathematics, Vol. 196 (M. Křížek, P. Neittaanmäki, and R. Stenberg, eds.). Marcel Dekker, New York, 1998.

  25. J. C. Nédélec: Mixed finite elements in ℝ3. Numer. Math. 35 (1980), 315–341.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. C. Nédélec: A new family of mixed-nite elements in ℝ3. Numer. Math. 50 (1986), 57–81.

    Google Scholar 

  27. L. A. Oganesjan, L. A. Ruhovets: Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary. Zh. Vychisl. Mat. Mat. Fiz. 9 (1969), 1102–1120.

    Google Scholar 

  28. V. Ruas Santos: On the strong maximum principle for some piecewise linear-nite element approximate problems of non-positive type. J. Fac. Sci., Univ. Tokyo, Sect. IA Math. 29 (1982), 473–491.

    MATH  MathSciNet  Google Scholar 

  29. R.P. Stevenson: An optimal adaptive finite element method. SIAM J. Numer. Anal. 42 (2005), 2188–2217.

    Article  MATH  MathSciNet  Google Scholar 

  30. P. Tong: Exact solutions of certain problems by finite-element method. AIAA J. 7 (1969), 178–180.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The second author was supported by Grant No. 112444 of the Academy of Finland. The third author was supported by grant No. 201/04/1503 of the Grant Agency of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandts, J., Korotov, S. & Křížek, M. Simplicial finite elements in higher dimensions. Appl Math 52, 251–265 (2007). https://doi.org/10.1007/s10492-007-0013-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-007-0013-6

Keywords

Navigation